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1. Introduction

We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-
Medvid'ova, ]. Saibertov’a, G. Warnecke, Finite volume evolution Galerkin methods for non-
linear hyperbolic systems, ]. Comp. Phys. (2002) 183 533- 562; M. Lukacova-Medvid’ova,
K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyper-
bolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially
varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical
scheme for wave propagation problems in a heterogeneous media. We illustrate our meth-
odology for acoustic waves in a heterogeneous medium but the results can be generalized
to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predic-
tor-corrector method combining the finite volume corrector step with the evolutionary
predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional
approximate evolution operator. The latter is constructed using the theory of bicharacter-
istics under the assumption of spatially dependent wave speeds. To approximate heteroge-
neous medium a staggered grid approach is used. Several numerical experiments for wave
propagation with continuous as well as discontinuous wave speeds confirm the robustness
and reliability of the new FVEG scheme.

© 2008 Elsevier Inc. All rights reserved.

Hyperbolic conservation laws with spatially varying fluxes arise in many practical applications. For example, in modelling
of acoustic, electromagnetics or elastic waves in heterogeneous materials or in the traffic flow with varying conditions. In
exploration seismology one studies the propagation of small amplitude of man made waves in earth and their reflection
off geological structures. For numerical modelling of wave propagation in heterogeneous media the reader is referred, for
example, to [1,8-10,14,23] and the references therein. A large variety of finite difference schemes for wave propagation
can be found in particular in seismological literature; see, e.g., [2,3,7,12,24,33,34] just to mention some of them.

Our aim in this paper is to develop a new genuinely multi-dimensional method for approximation of hyperbolic conser-
vation laws with spatially varying fluxes using the so-called evolution Galerkin framework. In particular, we will illustrate
the methodology for the wave equation system with spatially varying wave speeds and simulate the propagation of acoustic
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waves in heterogeneous media. In our future study we would like to generalize ideas presented here to other models, for
example for linear elastic waves.

The evolution (or characteristic) Galerkin schemes were first derived by Morton, Siili and their collaborators for scalar
problems and for one-dimensional systems, see [15,16] and the references therein. This research was motivated by the pio-
neering work of Butler [4] and the related works of Prasad et al. [31,32]. In 2000 Lukacova-Medvid'ova, Morton and War-
necke derived the Evolution Galerkin schemes for the linear wave equation system with constant wave speed [17]. In the
recent works of Lukacova-Medvid'ova et al. [11,18-20] a genuinely multi-dimensional finite volume evolution Galerkin
(FVEG) method has been developed. The FVEG scheme can be viewed as a predictor-corrector method; in the predictor step
the data are evolved along the bicharacteristics to determine the approximate solution at cell interfaces. In the corrector step
the finite volume update in conservative variables is realized. The method works well for linear as well as nonlinear hyper-
bolic systems. In order to derive evolution operators for nonlinear systems a suitable local linearization has been used. For a
locally linearized system bicharacteristics are reduced to straight lines.

The goal of this paper is to derive the FVEG scheme for linear hyperbolic systems with spatially varying flux functions
without any local linearization. In this case the Jacobians are spatially varying but time independent and bicharacteristics
are no longer straight lines. This introduces new difficulties in the derivation of the exact integral representation as well
as in the numerical approximation. In particular, we consider the acoustic wave equation system with a variable wave speed.
The results presented here can be generalized to more complex hyperbolic conservation laws. However, we should note that
an important property of our model is the fixed number of positive eigenvalues; indeed, as we will see in Section 2 eigen-
values do not pass through zero. Consequently, we are not facing the difficulties with development of delta functions as it
might happen in a general case.

A mathematical model for propagation of acoustic waves can be derived from the conservative form of the Euler equa-
tions. One considers small perturbations of the background steady state p,, uo, vo, py, Where p, Uo, 2o, p, denote respectively
the density, x,y-components of velocity and pressure. For simplicity, we assume that the gas is at rest initially, i.e.
up = 0 = v,. It turns out from momentum equations of the Euler equations that p, has to be a constant. The acoustic waves
are then governed by the following first order system, cf., e.g., [8]:

p YPol TPV
pu| +1 p +1 0 =0. (1.1)
va t 0 X p y

Equivalently we have

u + (f,(w)), + (f>(w)), =0, (12)
where
p 3ol 5P
u=|pu|, f1wy=| p |, Fw)=| 0
Po? 0 p

and ao = /ypo/p, denotes the wave speed. We use (1.2) as our starting point.
In differential form this reads

v+ A vy + A, =0, (1.3)
p 0 7, O 0 0 7ypo
wherev=|u|, Ai=|; 0 0| A= ? 0 0 |.Note that p, = py(x,y) and p, = const. We develop the FVEG
v 0 0 O > 0 0

Po
method for the system of conservation laws (1.4) in which the flux functions are non-constant functions of x and y.

The paper is organized as follows: in Section 2 we start with a brief review of characteristic theory in multi-dimensions to
define the bicharacteristics of the wave equation system (1.3) and derive the exact integral representation along the bichar-
acteristics. In Section 3 the exact integral equations are approximated by numerical quadratures and suitable approximate
evolution operators are derived. In Section 4 the first and second order finite volume evolution Galerkin scheme are con-
structed. We will show that it is preferable to model the heterogeneous medium by means of a staggered grid. In fact we
approximate the wave speed and the impedance on a staggered grid. Finally, in Section 5 we illustrate the behaviour of
the presented scheme on a set of numerical experiments for wave equation system with continuous as well as discontinuous
wave speeds.

2. Bicharacteristics and exact integral representation

A characteristic surface Q : ¢(x,y,t) = 0 of (1.3) is a possible surface of discontinuity in the first order derivatives of ». The
evolution of the surface Q is given by the eikonal equation
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F(X7y7 t, Dxs (Py7 (Pt) = det(l(f)t +A1(px +A2(Py) = 07 (21)

where I is the 3 x 3 identity matrix. Note that (2.1) is a scalar differential equation for ¢. The characteristic curves of (2.1) are
called the bicharacteristic curves of (1.3). These are curves in the (x,y, t) space and can be obtained by solving the Charpit’s
equations, cf. [28]

de dx dy

— = L _F L _F

do ¥ do " do P
ﬂ — _F dp; F dp, _
do

(2.2)

b 0 R 2_ |
ts do X3 do ¥
where p; = ¢,, p, = ¢, and q = ¢,. A bicharacteristic curve in (x,t)-space is a solution (x(0), y(0), t(g), p;(0),
p,(0), q(0)) of (2.2) satisfying the relation

Fx(0),y(0),t(c),p:(0),p,(0),q(0) = 0. (2.3)

From the theory of first order partial differential equations it follows that a characteristic surface Q : ¢(x,y,t) = 0 of (1.3) is
generated by a one parameter family of bicharacteristic curves. We consider a special characteristic surface, namely the
backward characteristic conoid, generated by all bicharacteristic curves passing a point P = (x,y, t + At). Our aim is to derive
an expression for the solution of (1.3) at the point P(x,y, t + At) in terms of the solution at a point Q (x(t),y(t), t) lying on the
base of the above characteristic conoid at the level t.

From (2.1) and (2.3) it can be seen that for any fixed choice of (p;,p,) the relation (2.3) can be satisfied by three possible
values of g which are precisely the eigenvalues of matrix pencil p;A; + p,A,. Hence the system (1.3) possess three families of
bicharacteristics. It follows from the bicharacteristic Eq. (2.2) that two families of bicharacteristics coincides if they corre-
spond to two values of (p,,p,) which differ only by a constant factor. Thus, it is enough to consider (p,,p,) with
p? +p% =1. In what follows we take p, = cos0,p, =sin0 and denote n(0) = (cos 0,sin0),0 € [0,27]. The matrix pencil

A := cos 0A; + sin 0A; has three eigenvalues 4, = —ag, 1, =0, 13 = ap, ap > 0, and a full set of left and right eigenvectors.
1 1 7 _ i 1 1 3
L=3 <—m,c050,51n0), L =(0,sin0,—cos0), L= (m,cosasm()).
—0ofg 0 dopo (2.4)
ry=| cosf |, ry=|sinf|, r;=|coso|.
sin 6 cos 0 sin 6

As mentioned above the envelope of the bicharacteristics passing through a fixed point in space-time is called a character-
istic conoid, see Fig. 1; cf. also [17-22], where the notion bicharacteristic cone have been used in a special case of systems
with constant Jacobians. Let us consider the lower part of the characteristic conoid at the point P. Then a wavefront is the
projection on the (x,y)-space of the section of the characteristic conoid by a hyperplane t = const. The vector n(0) at any
point determines a unit normal direction to the wavefront, see Fig. 2. A ray is the projection of a bicharacteristic curve onto
the (x,y)-space. Therefore a wavefront is the locus of the tip of the rays. The velocity of these moving points in the plane is
called a ray velocity [5], [28]. For the system (1.3) these ray velocities corresponding to the three bicharacteristic fields can be
determined to be

%1 = (—0pcos 0, —apsinb), y, =(0,0), x; = (aocosb,apsinb).

Fig. 1. Characteristic conoid.
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Fig. 2. Wavefronts and rays.

Time evolution of the rays (x(t),y(t)) and of the normal vector n(60(t)) can be obtained using the extended lemma on bichar-
acteristics [29]

X dy . dé .
Fri —ap(x,y)cos o, P —ap(x,y)sind, Fri —ox SIN O + dgy COS 0,
dx dy do
b =~ _ = 25
dt 0, dt O’ det 0, 23)
dx dy . do .
Fri ap(x,y) cos 0, pr ap(X,y)sin 0, Fri Gox SIN0 — agy cos 0, 0 € [0,2m].

For the wave equation system with constant sound speed ao(x,y) = const. the bicharacteristic Eq. (2.5) can be solved imme-
diately to get the bicharacteristics to be straight lines. In Appendix A we derive the solution of the ray Eq. (2.5) and draw the
corresponding characteristic conoid in the case when ay(x,y) is a linear function of x, y. Note that in general the geometry of
the characteristic conoid can be quite complicated, see Figs. 1 and 2. Here the characteristic conoid is obtained by solving the
ray Eq. (2.5) with ao(x,y) = 1+ 1 (sin(4nx) + cos(4mx)).

Any solution of (2.5) may be represented as x = x(t,m), y =y(t,®), 0 = 0(t, ). Here w = 0(t,;1) € [0,27] is a parameter
and w = const. represents a particular bicharacteristic. From this representation it is clear that the wavefront can be param-
eterized by w. Again, we can see easily from the ray Eq. (2.5) that the third family of bicharacteristics is equivalent to the first
family up to a rotation of the angle 0 by m. Hence, the first and third family of bicharacteristics create the same characteristic
conoid. The second family of bicharacteristics degenerates to a single line. Thus in our integral representation below it will be
enough to consider the first and second bicharacteristic fields. For the wave equation system (1.3) the transport equations
along the three families of bicharacteristics [27], [28] can be obtained to be

dp du . dv

a—zocosea—zo sm@a—kzosfo (2.6)
. du dv .

Zp Sin GE — 2 COS GE + Go(pySin6 — p, cos0) =0 (2.7)

dp du . dv

a+zo cos Ha+zg smea+zos_ 0, (2.8)

where z, = dgp, is the impedance of the medium and S is a source term arising from the multi-dimensionality of the hyper-
bolic system

S := ap{u, sin® 0 — (u, + vy) sin 6 cos 0 + v, cos? O}. (2.9)

In the transport Egs. (2.6),(2.7),(2.8) the jth equation is valid only along the jth family of bicharacteristics, j = 1,2, 3. Our aim
is to derive an evolution operator for the wave equation system (1.3). Fix a point P = (x,y, t, + At) and consider the charac-
teristic conoid with P as the apex. Let Q; = Q;(x(tn),¥(ta), tn), Q; = Q;(x(7),¥(7),T), j = 1,2,3, be respectively the footpoints
of the jth family of bicharacteristics on the planes t=t, and t =1 € (ty,t,;1) (for simplicity we have denoted
X(tn, ),y (tn, 0),x(T,w),y(T,) by x(t,),y(ts),x(t) and y(t), respectively) We integrate the transport Eq.
(2.6),(2.7),(2.8)along the respective bicharacteristics and take an integral average over the wavefronts. Integrating (2.6) in
time from t, to t,,; and using the integration by parts for the second and third terms yield

p(P) = p(Qy) + cos w(zou)(P) — cos 0(zou)(Q;) — [ o (2080xtt) (Q1)dT + sin (2o v)(P) — sin6(z02)(Q4)

~ /t " 200y 2)(Q1)d1 — / ™ (25)(01)d. (2.10)
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Integrate (2.10) over w € [0,27] and divide by 27 to obtain

1

PP =5-

2n 27 thi1 .
/ (p —zouc050—zovsin())(Ql)dw—zl—n/ / (zo(@oxtt + Aoy 2))(Q1)dTdw
0 0o Ju

2T plngg ~
7%/0 /[ (205)(Q1)drdo. 2.11)

This is the exact integral representation for p. Integrating now (2.7) in time from ¢, to t,,; gives

sin w(zou)(P) — sin 0(zou)(Q,) — / " (% (sin 020)u> (Qz)dr — Cosw(zov)(P) 4+ cos 0(zov)(Qy)

,/t"+l (%(cos Gzo)v>(éz)dr+/[m (ap(sin 6p, — cos Opy))(éz)dr =0. (2.12)

Note that the first two integrals in (2.12) disappears due to the ray Eq. (2.5). Now, multiplying (2.12) by sin w and integrating
over m gives

a8}

T(zou)(P) — T(2ou)(Q,) + Tao(Q,) [ po(Q2)dT = 0. (2.13)

th

Multiply (2.10) by cos w and integrate over w to get
2n 2n tnit .
nzo(P)u(P) = / (—p + zoucos 0 + zyv sin 0)(Q,) cos wd + / / (Zo(aoxt + agyv))(Q4) cos wdtdw
0 0 tn
2n [os) ~
+/ / (20S)(Q4) cos wdtdw. (2.14)
0 th

Adding (2.13) and (2.14) and rearranging yields

1 2n . 1 2n hi1 ~
u(P):m/ (—p+zouc050+zov51n0)(Q1)coswdw+m/ / Zo(Aoxll + Aoy v)(Q1) cos wdtdw
0 0 th
1 1 tni1 . 1 2T plpgg .
Q) g | px(QZ)ch:+7271_ZO(P)/0 /t (205)(Q.1) cos wdtdoo. (2.15)

This is the exact integral representation of u. Analogously the exact integral representation for v can be derived

1 o . . 1 e =
v(P) ) /O (—p +zoucos 0 + zovsin 0)(Q,) sin wdw+m/o /t (Zo(aoxlt + Aoy v))(Q4) sinwdtdw

T 27z

1 1 thi1 . 1 2n theq - i
+§V(Q2) —m/tn py(Qz)dT'FWO(P)/O /[n (205)(Q1) sinwdrdo. (2.16)

In order to be consistent with our previous papers in what follows we put Q = Q; and Q, = Q..

Remark 2.1. Note that in [17,18,26] the exact evolution operator is derived in a slightly different way. It should be pointed
out that the previous procedure will yield the same evolution operator as we have obtained here.

3. Approximate evolution operator

In this section we approximate the exact integral representation (2.11),(2.15) and (2.16) by suitable numerical quadra-
tures and derive the corresponding approximate evolution operators.

Note that the exact integral equations contain time integrals involving the derivatives of the unknown variables. These
are the terms that need our attention. First, let us consider in (2.15), (2.16) the integrals of p, and p, along a time like bichar-
acteristic. In order to eliminate these integrals we use the differential Eq. (1.3) and replace p, and p,. Integration of the sec-
ond equation of (1.3) in time gives

2U(P)~51(Q) =~ [ p(Qojdr 31)

Thus, plugging (3.1) in (2.15) the integral containing p, disappears. The integral of p, in (2.16) is treated analogously. This
yields the following equivalent formulation of the exact integral equations for u, v that is the base for the so-called EG1
approximate evolution operator, cf. [17]:
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” 2n tn+1 -
u(P) :#(P)/o (—p + zou cos 0 + zov'sin 0)(Q) cosa)dcoJr%(P)/0 /t Zo(oxt + oy v)(Q) cos wdt dw
1 21 thi1 .
+W(P)/O /t" (205)(Q) cos wdtdw (3.2)
1 21 . P ~
v(P) :W(P) /0 (—p +zoucos 0 + zov sin H)(Q) sin wdw+m/o (/tn (2o(doxti + doy))(Q) sin wdz dos
1 2n tn+l N .
+W(p)/0 /t (205)(Q) sinwdrdw. 23

On the other hand, the integral representation (2.11), (2.15), (2.16) can still be used as a base for the approximate evolution
operator. In the so-called EG3 framework the time integrals of p, and p, are first approximated by the rectangle rule at time
T = t,. The resulting terms at t,, are further approximated by an integral average along the wavefront. An application of the
Gauss theorem then enables us to replace the derivatives, see [17]. In order to use the averages along wavefronts one re-
quires the exact form of the wavefront. In the next section we will show that the wavefronts can be approximated by circles
up to the second order accuracy. Using the approximate wavefront given in Section 3.1 the FVEG method based on the EG3
approximate evolution operator has been derived and implemented. However our numerical experiments indicate that the
EG1 approximate evolution operator yields better accuracy than the application of the EG3 operator. In what follows we re-
strict therefore to the FVEG scheme using the EG1 approximate evolution operator.

Henceforth we assume Ax = O(At), Ay = O(At) due to the CFL stability condition

max{maxap(x,y)At/Ax, maxap(x,y)At/Ay} < v, (3.4)
Xy Xy
where v < 1 is the corresponding stability limit.
3.1. Approximation of the wavefront

As follows from (2.5) the geometry of the wavefront is described by the angle 0 = 0(t,, ). In this section we will show
that the wavefronts are circles up to second order accuracy. This allows us to evaluate spatial integrals in (2.11),(3.2) and
(3.3) efficiently. The spatially varying wave speed, which determines the radius of these circles, offers two possibilities to
approximate the wavefront: a single circle or arcs of circles that are related to the computational grid, see Fig. 3. Using
our previous results from [18] we can evaluate for any polynomial function all spatial integrals along circles or arcs of circles
exactly. This is a crucial step in the construction of the FVEG schemes. Indeed, we take all of the infinitely many directions of
wave propagations explicitly into account. Moreover exact integration of piecewise polynomial approximate functions yields
a very efficient numerical method, much more accurate then standard finite volume schemes [18], [20].

Let us note that if the wave speed a is given by a linear function then the wavefronts are in fact circles. This can be shown
analytically, see Appendix A. The centers of circles are then dependent on the gradient of a,. This can be used in the vicinity
of our bilinear reconstruction. On the other hand in order to keep the approximate evolution operator simple we can still use
circles with center at Q,. Our numerical experiments confirm that this yields a scheme which is at least twice faster while
having similar accuracy. In fact, differences in the global errors were just marginal.

Since the independent variable of the integrals in (2.11),(3.2) and (3.3) is  we are looking for an approximation of 0 in
terms of w. The normal of the wavefront of the first bicharacteristic family is described by, cf. (2.5),

do

Fri —0ox Sin 0 + agy €00, O(tr1) = .

Fig. 3. Approximate wave front consisting of 4 arcs of circles; relative position of boundary terms and wave speeds for a vertex of computational grid.
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Due to the CFL condition (3.4) the wavefront will never exceed one cell of the computational grid. Thus we can assume
ao(X,y) = Go + O(AX), @, (X,y) = Go, + O(AX), o, (X,y) = To, + O(AX), (3:5)

where o, @o,, Go, are arbitrary but fixed first order approximations of the wave speed and its derivatives at

(X(tnﬂ )’.V(tnﬂ ))7 X = X(tn—l) =+ @(Ax),y = .V(th) + C”(AX,). This implies

0(tn) = 0(ta1) + % " (tn — tn1) + O(AL?)
= — [~0g, Sin @ + do, COs W]At + O(At?) (3.6)
= + O(At). (3.7)
The ray equation for the x-component of the first bicharacteristic family reads
% = —dp(X,y) cos 0.

Using (3.5) and (3.7) we obtain

dx _

—— = —0p COS W + O(At).

dt 0 +o(al)

Assuming without loss of generality x(t,.1) = 0 and integrating in time from t, ; to t, yield
X(t, @) = GoAt cos @ + O(AL?).

The expression for y-component is derived similarly. The approximations for x and y are fundamental for further derivations.
They indeed give the opportunity to approximate the wavefront by circles centered at (x(t,;1),y(tn1)) and parameterized by

w
e - () oS5 s 1)

Let f € C' be any function to be evaluated on the wavefront then by the Taylor expansion

f(Q) = f(@oAt cos , GoAt sin m) + O(AL?). (3.9)
This leads us to the following definition of the approximate wavefront:

{Q := (@At cos w, oAt sinw)’, w € [0,2m]}. (3.10)
As we have already pointed out ay, might be defined such that

dp = do(®), do, = Go, (@), dg, =g, (), o €[0,27]. (3.11)
The dependency on w gives the opportunity to approximate the wavefront by parts of circles according to the computational

grid. For example, if the point P = (x(tn.1),¥(tns1)) is a vertex of the computational grid consisting of rectangles, the wave-
front can be created by four different arcs of circles, cf. Fig. 3.

3.2. Approximations of the exact integral representation

Let us first approximate the following mantle integral:

/:n /t.tml Zo(aoxll + aoyv)(é)f(co) dtdw (3.12)

that appears in (2.11), (3.2) and (3.3) with f(w) = 1,f(w) = cos  and f(w) = sin w, respectively. Applying the rectangle rule
at T = t, for time integration gives the ¢(At?) error at one time step. The exact wavefront is then replaced by the approximate
wavefront (3.10) and 0 is approximated by (3.7). The wave speed a, and its spatial derivatives are approximated by (3.5),
where dy, do,, do, can be taken from the corresponding bilinear recovery. This yields the first order approximation. Note how-
ever that in the mantle integrals the first order terms are further multiplied by At that arises from the time integration. This
gives the desired second order accuracy.

For the integrals involving the multi-dimensional source term S, cf. (2.9), and for the integrals along the bottom of cone a
special treatment will be required.

3.2.1. Integrals involving the multi-dimensional source term S

In order to eliminate spatial derivatives in the multi-dimensional source term S the so-called useful lemma, cf. [17], is
used. In the case of spatially dependent wave speed the wavefront might be approximated by arcs of circles and the integra-
tion by parts gives additional boundary terms.
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Lemma 3.1. Extended useful lemma
Let w e C'(R?),p € C'(R),C = (acosw,asinw), a e R, ¢; €[0,27], ¢, € [0,27]. Then

$2 b2
[ b)) sin oo —w (€)coslde = 2 ([ popmw(Cdor + pion wIC(6)) ~ plo2C(62) ).

Proof. Apply integration by parts, cf. [17], and take boundary terms into account. O

From [30] we note that the multi-dimensional source term S contains tangential derivatives of u and v for any curve with
unit normal (cos 0, sin 0) and hence extended useful lemma holds not only for the case when the wavefront consists of parts
of circles but even for arbitrary curves. Let us point out that even if the wavefront is represented by a single circle the bound-
ary terms occur due to discontinuities of the numerical approximation. These small jump terms might be neglected since the
approximations converge. All numerical tests presented in the Section 5 indicate that if the boundary terms are included
results are slightly more accurate. In fact, if the boundary terms are included the computational costs increase mostly at
10%. The global error is improved typically at the second nonzero digit.

Since zy = HLO" we have z,S = yp,(S/ao), note that yp, is a constant and S contains a factor ao. Applying the rectangle rule in
time for the mantle integral involving S in (2.11) yields

I = /Ozn /t[ (%) (0)drdo = At/ozn <a§0> (Q)dw + O(AP).

Note that here Q is still a function of 0 = 0(t,, w). Applying the first order approximation of 0 (3.7), the approximate wave-
front (3.10) and (3.9) yields

2n
I = / (tx Sin @ — (U + vy) COS W Sin @ + v, cos? )(Q)dw + O(AL?).
0

Let us consider a vertex of a computational grid consisting of rectangles, cf. Section 4. We want to predict a solution at this
vertex. The approximate wavefront is then divided into four slices whose boundaries can be symbolized by the angles
¢j =jn/2 for j=0,1,...,4. We define for any function f and angle ¢, cf. Fig. 3,

fQ¢) = JLT Q). fQ@Y) = (}ljdr)l F@Q9)).

Due to (3.11) different choices of d, according to the cells neighboring the vertex are possible. We will express this in the
next formulae by @,j =0, ..., 3. Application of Lemma 3.1gives

3 i1 _ 3 _
L= Z ; (/ (ucosw + vsin w)(Q)dw> + Z ;[(u sin ¢; — vcos ¢;)(Q(¢;")) — (usin¢;,4
. j:.o/2 alo ] ) j:{o/2 ‘16

j=im j=in

— 005 $;,1)(Q(d).1))] + O(AL). (3.13)

Note that the first sum of integrals on the right hand side can be written equivalently as

2n
/ —(ucosw + vsinw)(Q)dw,
o o

where dp = Gg(w) or d, = const. The mantle integrals involving the multi-dimensional source term S in (3.2), (3.3) are
approximated in an analogous way.

3.2.2. Integrals along the bottom of cone
Since in the integrals along the bottom of cone there is no extra factor At arising from the time integration we need to
approximate 0 in terms of @ up to second order. Let us consider

L= /Oh(zo(u cos 0+ vsin0))(Q)f (w)dw,

that appears in (2.11), (3.2), (3.3) with f(w) = 1,f(w) = cos w and f(w) = sin w, respectively. Using (3.6), the Taylor expan-
sion of trigonometric functions and (3.9) lead to
2n _ 2n _
L = / (zo(ucosm + vsinw))(Q)f (w)dw + At/ (zo[usin @ — v cos w)[—ao, sin @ + do, cos ®])(Q)f (w)dw + O(At?),
0 0
(3.14)

that is the desired second order approximation.
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3.2.3. The approximate evolution operator
Applying the rectangle rule in time and the approximations (3.13), (3.14) to the exact integral representation (2.11),(3.2),
(3.3) we obtain the following approximate evolution operator for the wave equation system with variable wave speed:

1 2n =
p(P) =5 [/0 (p —zo(ucos  + vsinw))(Q)dw

2T 2n
— At / (2o[usin® — v cos w)[—ao, sin @ + do, cos w])(Q)dw — At / (20(@o,u + o, v))(Q)d®
0 JO

3 i1 _ _
— 7P Z /¢ (ucosw + vsinw)(Q)dw + (usin ¢; — v cos ¢;)(Q(¢;))

j=0 ’j
$j=in/2
~(usin gy, — vcos ;1) Q)] | + C(ae),
u(P) = %(P) {/zn(—p + zo(u cos w + vsin w))(Q) cos wdw
0

2n
+ At/ (2ousinw — v cos w)[—do, Sin w + do, cos w])(Q) cos(w)dw
0
2n _
+ At/ (2o(do,u + Go, v))(Q) cos xdw

3 [ _

+ 7P Z {/{pl u(2cos’w — 1) +2vcos wsin w)(Q)dw
j 0 0 j

=jn/2

+ (ucos qu sin ¢; — v cos qﬁj)(Q(qu))
~(u(cos gy, singy.1) - veos? ¢;,1) Q7)) || + C(AR),

v(P) = %(P) {/Ozn(—p + Zp(ucos w + vsinm))(Q) sin wdw

2n
+ At/ (zo[u sin @ — v cos w][—dy, Sin W 4 dg, COS ))(Q) sin(w)dw
0
2n .
+ At/ (2o(@o,u + Go, v))(Q) sin wdw
0

3 [ _
+0 > = M’ (ucoswsinw + v(2sin’ w — 1)(Q)dw
0
¢;]}7T/2 '

+ (usin® ¢; — vcos ¢;sin ¢;)(Q(¢;))
—(u(sin® $j11) — VCOS ;4 Sin ¢]—+1)(§(</>};1))H + O(AL?).

Note that if ao is constant then ypy/do = zo is constant as well. In this case the approximate evolution operator proposed here
coincides with the approximate evolution operator EG1 given in [17] if the jump boundary terms at Q(¢; ) and Q(¢;,,) are
omitted.

4. Finite volume evolution Galerkin method

Let us divide a computational domain @ into a finite number of regular finite volumes j := [iAX, (i + 1)AX]x
iAy,(j+1)Ay] for i =0,...,M, j=0,...,N; Ax, Ay are the mesh steps in x- and y-directions, respectively. Denote by Uj;
the piecewise constant approximate solution on a mesh cell ©; at time ¢, and start with initial approximations obtained
by the integral averages U ‘Q i fQ ). Integrating the conservation law (1.2) and applying the Gauss theorem on
any mesh cell Q; yield the followmg update formula for the finite volume evolution Galerkin scheme:

R g a5, (4.1)

Here 6! by stand for the central difference operators in x or y-direction and fk“/ 2k =1,2, represents an approximation to
the cell interface flux at the intermediate time level t" + At/2. We evolve the cell 1nterface fluxes f"“/2 to t, + 1/2 using
the approximate evolution operator denoted by E,.» and average them along the cell interface &
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fi'? =Y ofExpU"®(6)), k=1,2. (42)
J
Here &/(£) are the nodes and ; the weights of the quadrature for the flux integration along the edges.
4.1. Staggered grid

In order to evaluate cell interface fluxes fZ“/ 2 k=1,2, we need to approximate spatially varying ao and zo. The most nat-

ural approach is to use the cell averages ao; = 15 Jo, @0 and zy, = o Jo, 7. In this case ao and z, are approximated on the
ij ij

Pressure p at t=3.1 Velocity u at t=3.1

1.5

0.8r 1
0.7 1
0.61 1
0.51 1
0.4r 1
0.3 1
0.2 1
0.1r 1

0

-5 0 5 -5 0 5

Fig. 4. Flawed solution without staggered grid approximation for the wave speed and impedance.

Pressure p at t=3.1 Velocity u at t=3.1
1.5 ; .
0.8f

0.7}
0.6
0.5
0.4}
0.5} 0.3
0.2}
0.1}

0 0
-5 0 5 -5 0 5

Fig. 5. Solution with staggered grid approximation for the wave speed and impedance.

-y 8
Qi-1)(j-1) Qi(j-1)

Fig. 6. Staggered grid and quadrature nodes.
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same grid as conservative variables and they are discontinuous along cell interfaces. In what follows we will show that this
approach leads to artificial kinks at interfaces.

In order to illustrate the above phenomena let us consider the following example, cf. [13]. Set y = 1 = p,. The wave speed
is:
1.0 if x<0

‘M”:{os if x>0,

initial pressure and velocity read

1-(x+3)? if —4<x<-2,
otherwise.

MM—M@—{
0

The computational domain is the interval [—5;5]. Absorbing boundary conditions have been implemented by extrapolating
all variables. We set the end time to t = 3.1 and use a mesh with 200 cells. In the second order FVEG method the minmod

Table 1
Data for the one-dimensional test cases.
Example 1 Example 2 Example 3
Isentropic exponent y 1.4 V3 14
Background pressure p, 1.0 0.5 320/119 =~ 2.69
. 0.6 if 035<x<0.65
1 1
Wave speed ag 1 + 5 cos(4mx) 1 + 5sin(107x) 20 otherwise
e q 1.75 — 0.75 cos(107x — 4m) if 04<x<06
Initial pressure p sin(27x) 1.0 otherwise
Final time =10 t=03
Computational domain Q=[0;1]
Boundary condition Periodic
Wavespeed
1.5 " .
1
0.5 . . . .
0 0.2 0.4 0.6 0.8 1

Pressure p at t=0 and t=1 Velocity u at t=0 and t=1

0.4

0.2 0.4 0.6 0.8 1 ) 0.2 0.4 0.6 0.8 1

Fig. 7. Example 1 with a smooth wave speed.
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limiter was used in order to limit overshoots and undershoots of linearly recovered approximations. In Fig. 4 both compo-
nents of the solution at time t = 3.1 are depicted. We can clearly recognize artificial overshoots as the wave runs through the
interface at x = 0.

This effects can be explained by the following analysis. Let us reconsider the evolution Galerkin operator simplified to first
order and apply it on a one-dimensional x-dependent data. Assume that derivatives of u are bounded and omit all ¢(At) terms

1 2T _
p(P) = o /O (p — zoucos w)(Q)dw + O(At)

1

2n . y‘
" zo(P) /0 (=D + 2ot cos )(Q) cos wdw + O(At).

u(P)

It is easy to realize that the term zou yields difficulties. Using piecewise constant approximation and predicting p(P) at cell
interface we obtain

2n
3 |, @ coseode 2 (22w, - u) + (a0, 20 ).
It is the discontinuity of impedance z, along the integration path that yields a jump term. In order to achieve continuous
approximation of zy we can replace zy; and zo, by their average (zo; + zo,)/2. Choosing such an approximation the jump term
disappears and the artificial kinks vanish in numerical experiments as demonstrated in plots of Fig. 5.

The above example clearly indicates that the discontinuous approximation of z, along an integration path has to be
avoided. To overcome the above problem we introduce the so-called staggered grid {f)k,}k‘l, where Q := [(k — 1)Ax/2,
(k+ 1)Ax/2] x [(I-1)Ay/2,(1+ 1)Ay/2] for k=0,...,M, I =0,...,N. The staggered grid will be used in the predictor (evo-
lution) step in order to approximate the wave speed a, and the impedance z,.

For the flux integration along cell interfaces in (4.2) the trapezoidal rule has been used. Thus, the quadrature nodes are the
vertices of computational cells and each cell Qy of the staggered grid is associated to the corresponding quadrature node, see
Fig. 6. Note that the use of midpoint rule would reduce the FVEG method to a standard dimensional splitting Godunov-type
scheme. It should be pointed out that we can still approximate the wave front by one circle or by arcs of circles, cf. (3.11). Our
numerical experiments indicate only marginal differences between these two approximations. In what follows we represent
for simplicity the wave front by a single circle. Now, along the whole integration path continuous approximation of ay and z
on Ezk, is used and no spurious oscillations develop.

Wavespeed

MmART

v

0.2 0.4 0.6 0.8 1

Pressure p at t=0 and t=0.3 Velocity u at t=0 and t=0.3

25

0.6

Fig. 8. Example 2 with nonsmooth initial pressure.
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Wavespeed

N

0.5
0 0.2 0.4 0.6 0.8 1

Pressure p at t=0 and t=0.3 Velocity u at t=0 and t=0.3
25 0.2

! ! 0.05

~0.05}¢

-0.1t

-0.15f

05 : : : : -0.2 : : : :
0 0.2 0.4 0.6 08 1 0 0.2 0.4 06 08 1

Fig. 9. Example 3 with a discontinuous wave speed.

Table 2

L' errors and experimental order of convergence; Example 1 with a smooth wave speed, reference solution: 409 600 cells.

N L' error of p EOC L' error of u EOC L' error of p,u EOC
25 7.65e—02 4.53e-02 8.80e—02

50 2.60e—02 1.557 1.46e—-02 1.633 2.82e-02 1.642
100 5.87e—03 2.146 4.30e-03 1.763 7.23e—03 1.962
200 1.41e-03 2.053 9.60e—04 2.164 1.65e—-03 2.134
400 3.40e—-04 2.056 2.23e-04 2.107 3.93e-04 2.065
800 8.39e—05 2.017 5.40e—05 2.044 9.75e—-05 2.012
1600 2.09e-05 2.005 1.33e-05 2.018 2.44e-05 2.000
3200 5.22e—06 2.001 3.31e-06 2.008 6.09e—06 1.998
6400 1.30e-06 2.000 8.25e-07 2.004 1.52e-06 1.999
12 800 3.26e-07 2.001 2.06e—-07 2.002 3.81e-07 2.000
Table 3

L' errors and experimental order of convergence; Example 2, reference solution: 409 600 cells.

N L' error of p EOC L' error of u EOC L' error of pyu EOC
25 7.66e—02 8.80e—02 9.19e-02

50 3.74e—-02 1.033 3.22e-02 1.448 4.52e—-02 1.023
100 1.41e-02 1.406 1.19e-02 1.442 1.91e-02 1.240
200 3.81e-03 1.891 2.99e-03 1.988 5.54e-03 1.788
400 8.93e-04 2.092 7.47e—-04 1.999 1.34e-03 2.043
800 2.16e—04 2.049 1.94e-04 1.944 3.27e-04 2.038
1600 5.41e-05 1.995 5.05e—05 1.943 8.20e—-05 1.994
3200 1.37e-05 1.985 1.30e-05 1.960 2.07e-05 1.986
6400 3.45e-06 1.986 3.30e—-06 1.974 5.22e—06 1.986

12 800 8.72e—07 1.983 8.39e—07 1.977 1.32e—-06 1.985
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In order to obtain the second order scheme a recovery procedure has to be applied. The solution components p, u and v are
recovered using usual bilinear recovery, cf. [18]. Analogously, the wave speed a, and the impedance z, are recovered on the
staggered grid. The slopes are limited by a suitable limiter at each time step. In our numerical experiments we worked with
the minmod and the monotonized minmod limiters, cf. [13].

We should point out that the use of staggered grid approach in order to model spatially varying wave speeds is a novel
feature of the FVEG method developed in this paper.

5. Numerical experiments

In this chapter we illustrate behaviour of the new FVEG method on a set of one- and two-dimensional experiments with
continuous as well as discontinuous wave speeds. All experiments have been done with two-dimensional FVEG method. In
the case of one-dimensional experiments we have imposed zero velocity v = 0 and use simply the midpoint rule for the flux
integration along cell interfaces. In all our experiments we have set the CFL number v = 0.55 which is in agreement with our
previous theoretical stability analysis [22]. Since the main aim of this section is to test accuracy and robustness of the newly
developed FVEG scheme, we confine ourselves to test problems with simple boundary conditions, e.g. periodic or extrapo-
lation boundary conditions. The reader is referred to [21] for more detailed study on various techniques for implementation
of reflected and absorbing boundary conditions in the framework of the evolution Galerkin scheme.

5.1. One-dimensional experiments

The first experiment is motivated by [17], the other two one-dimensional tests are motivated by [1]. In all test cases the
initial velocities u and v are set to zero. Data setting for the corresponding experiments are given in Table 1. All results of the
one-dimensional experiments presented in Figs. 7-9 are computed on a mesh with 100 cells, the reference solutions have
been computed on a mesh with 25 600 cells. The dashed line plots are the initial conditions. The results have been also used
for the evaluation of the experimental order of convergence (EOC) and no slope limiter has been applied here.

5.1.1. Example 1: smooth data

In this experiment we study behaviour of the scheme for smoothly varying wave speed, cf. Fig. 7. We can notice that even
on a mesh with 100 cells all qualitative properties of the solution are well resolved. Table 2 demonstrates the second order
accuracy of the FVEG scheme using bilinear recovery.

Table 4
L' errors and experimental order of convergence; Example 3 with a discontinuous wave speed, reference solution: 409 600 cells.
N L' error of p EOC L' error of u EOC L' error of pyu EOC
25 1.03e-01 2.12e-02 7.99e-02
50 4.08e—02 1.334 1.51e-02 0.484 6.81e—-02 0.230
100 5.36e—03 2.928 1.94e-03 2.965 5.78e-03 3.558
200 1.24e-03 2.108 4.88e—04 1.987 1.89e-03 1.610
400 3.15e-04 1.981 1.20e—04 2.023 5.13e—04 1.883
800 9.40e—05 1.743 3.11e-05 1.948 1.53e-04 1.741
1600 2.06e—05 2.192 7.48e—06 2.056 3.42e-05 2.166
3200 6.04e—06 1.768 1.95e—-06 1.938 1.00e—05 1.773
6400 1.33e-06 2.182 4.72e—-07 2.047 2.19e—-06 2.187
12 800 2.87e-07 2.210 9.90e—08 2.253 4.54e—-07 2272
Wavespeed Wavespeed

.08

it

.~ 08
e 04
08 . 02 )
¥ 10 L/ 02 04 06 08

Fig. 10. Example 5.2.1, graph and isolines of spatially varying wave speed a,.
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5.1.2. Examples 2 and 3: nonsmooth data

These experiments are motivated by LeVeque [1]. Note that in [1] p, # const. and thus our results can not be directly com-
pared with those presented by LeVeque et al. We therefore calculated y and p, such that the average of the impedance used
here and the average of the impedance used in [1] coincide.

Note that the initial condition of pressure in Examples 2 and 3 is only C', not C? as we assumed in the derivations using
the local truncation analysis. Numerical experiments still indicate that the scheme is second order accurate, cf. Table 3. In the
Example 3 there is an additional difficulty as the wave speed is discontinuous. The reconstruction of the wave speed is al-
ways set to constant function, as otherwise a slope of ©(1/Ax) will be created at the discontinuity. Note that no slope limiter
has been used here due to the EOC measurements.

Interestingly, the EOC values in Table 4 seem to oscillate in some sense. This can be explained in the following way. The
values for zo and a, on the staggered grid are automatically created by our implementation. This procedure uses midpoint rule
for approximation of the cell averages. One can show that then for different resolutions a numerical discontinuity can be right
to or left to the analytical discontinuity. This is true for both discontinuities of the wave speed. Furthermore, the left and right
discontinuities are in this sense independent from each other. We believe that this is the source of the described behaviour in
the Table 4. Since the implementation handles the situation fully automatically and the EOCs are overall close to second order,
this is in fact advantageous, because there is no need of a special treatment of the wave speed in such a situation.

We can notice in Fig. 9 that there is a small kink in the velocity field at the discontinuity of the wave speed. Even if one
apply a minmod limiter this kink still remains there but vanishes as the mesh is refined.

5.2. Two-dimensional experiments

All numerical experiments presented in Figs. 10-15 are computed on a mesh with 400 x 400 cells. The two-dimensional
tests confirm the expected second order accuracy and show good r