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a b s t r a c t

We present a generalization of the finite volume evolution Galerkin scheme [M. Lukáčová-
Medvid’ová, J. Saibertov’a, G. Warnecke, Finite volume evolution Galerkin methods for non-
linear hyperbolic systems, J. Comp. Phys. (2002) 183 533– 562; M. Lukáčová-Medvid’ová,
K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyper-
bolic problems, SIAM J. Sci. Comput. (2004) 26 1–30] for hyperbolic systems with spatially
varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical
scheme for wave propagation problems in a heterogeneous media. We illustrate our meth-
odology for acoustic waves in a heterogeneous medium but the results can be generalized
to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predic-
tor–corrector method combining the finite volume corrector step with the evolutionary
predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional
approximate evolution operator. The latter is constructed using the theory of bicharacter-
istics under the assumption of spatially dependent wave speeds. To approximate heteroge-
neous medium a staggered grid approach is used. Several numerical experiments for wave
propagation with continuous as well as discontinuous wave speeds confirm the robustness
and reliability of the new FVEG scheme.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Hyperbolic conservation laws with spatially varying fluxes arise in many practical applications. For example, in modelling
of acoustic, electromagnetics or elastic waves in heterogeneous materials or in the traffic flow with varying conditions. In
exploration seismology one studies the propagation of small amplitude of man made waves in earth and their reflection
off geological structures. For numerical modelling of wave propagation in heterogeneous media the reader is referred, for
example, to [1,8–10,14,23] and the references therein. A large variety of finite difference schemes for wave propagation
can be found in particular in seismological literature; see, e.g., [2,3,7,12,24,33,34] just to mention some of them.

Our aim in this paper is to develop a new genuinely multi-dimensional method for approximation of hyperbolic conser-
vation laws with spatially varying fluxes using the so-called evolution Galerkin framework. In particular, we will illustrate
the methodology for the wave equation system with spatially varying wave speeds and simulate the propagation of acoustic
. All rights reserved.
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waves in heterogeneous media. In our future study we would like to generalize ideas presented here to other models, for
example for linear elastic waves.

The evolution (or characteristic) Galerkin schemes were first derived by Morton, Süli and their collaborators for scalar
problems and for one-dimensional systems, see [15,16] and the references therein. This research was motivated by the pio-
neering work of Butler [4] and the related works of Prasad et al. [31,32]. In 2000 Lukáčová-Medvid’ová, Morton and War-
necke derived the Evolution Galerkin schemes for the linear wave equation system with constant wave speed [17]. In the
recent works of Lukáčová-Medvid’ová et al. [11,18–20] a genuinely multi-dimensional finite volume evolution Galerkin
(FVEG) method has been developed. The FVEG scheme can be viewed as a predictor–corrector method; in the predictor step
the data are evolved along the bicharacteristics to determine the approximate solution at cell interfaces. In the corrector step
the finite volume update in conservative variables is realized. The method works well for linear as well as nonlinear hyper-
bolic systems. In order to derive evolution operators for nonlinear systems a suitable local linearization has been used. For a
locally linearized system bicharacteristics are reduced to straight lines.

The goal of this paper is to derive the FVEG scheme for linear hyperbolic systems with spatially varying flux functions
without any local linearization. In this case the Jacobians are spatially varying but time independent and bicharacteristics
are no longer straight lines. This introduces new difficulties in the derivation of the exact integral representation as well
as in the numerical approximation. In particular, we consider the acoustic wave equation system with a variable wave speed.
The results presented here can be generalized to more complex hyperbolic conservation laws. However, we should note that
an important property of our model is the fixed number of positive eigenvalues; indeed, as we will see in Section 2 eigen-
values do not pass through zero. Consequently, we are not facing the difficulties with development of delta functions as it
might happen in a general case.

A mathematical model for propagation of acoustic waves can be derived from the conservative form of the Euler equa-
tions. One considers small perturbations of the background steady state q0;u0;v0; p0, where q0;u0; v0; p0 denote respectively
the density, x; y-components of velocity and pressure. For simplicity, we assume that the gas is at rest initially, i.e.
u0 ¼ 0 ¼ v0. It turns out from momentum equations of the Euler equations that p0 has to be a constant. The acoustic waves
are then governed by the following first order system, cf., e.g., [8]:
p
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Equivalently we have
ut þ ðf 1ðuÞÞx þ ðf 2ðuÞÞy ¼ 0; ð1:2Þ
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denotes the wave speed. We use (1.2) as our starting point.

In differential form this reads
v t þ A1vx þ A2vy ¼ 0; ð1:3Þ
where v ¼
p
u
v
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24 35. Note that q0 ¼ q0ðx; yÞ and p0 � const. We develop the FVEG

method for the system of conservation laws (1.4) in which the flux functions are non-constant functions of x and y.

The paper is organized as follows: in Section 2 we start with a brief review of characteristic theory in multi-dimensions to
define the bicharacteristics of the wave equation system (1.3) and derive the exact integral representation along the bichar-
acteristics. In Section 3 the exact integral equations are approximated by numerical quadratures and suitable approximate
evolution operators are derived. In Section 4 the first and second order finite volume evolution Galerkin scheme are con-
structed. We will show that it is preferable to model the heterogeneous medium by means of a staggered grid. In fact we
approximate the wave speed and the impedance on a staggered grid. Finally, in Section 5 we illustrate the behaviour of
the presented scheme on a set of numerical experiments for wave equation system with continuous as well as discontinuous
wave speeds.
2. Bicharacteristics and exact integral representation

A characteristic surface X : uðx; y; tÞ ¼ 0 of (1.3) is a possible surface of discontinuity in the first order derivatives of v . The
evolution of the surface X is given by the eikonal equation
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Fðx; y; t;ux;uy;utÞ � detðIut þ A1ux þ A2uyÞ ¼ 0; ð2:1Þ
where I is the 3� 3 identity matrix. Note that (2.1) is a scalar differential equation for u. The characteristic curves of (2.1) are
called the bicharacteristic curves of (1.3). These are curves in the ðx; y; tÞ space and can be obtained by solving the Charpit’s
equations, cf. [28]
dt
dr
¼ Fq;

dx
dr
¼ Fp1

;
dy
dr
¼ Fp2

;

dq
dr
¼ �Ft ;

dp1

dr
¼ �Fx;

dp2

dr
¼ �Fy;

ð2:2Þ
where p1 ¼ ux; p2 ¼ uy and q ¼ ut . A bicharacteristic curve in ðx; tÞ-space is a solution ðxðrÞ; yðrÞ; tðrÞ; p1ðrÞ;
p2ðrÞ; qðrÞÞ of (2.2) satisfying the relation
FxðrÞ; yðrÞ; tðrÞ; p1ðrÞ;p2ðrÞ; qðrÞ ¼ 0: ð2:3Þ
From the theory of first order partial differential equations it follows that a characteristic surface X : uðx; y; tÞ ¼ 0 of (1.3) is
generated by a one parameter family of bicharacteristic curves. We consider a special characteristic surface, namely the
backward characteristic conoid, generated by all bicharacteristic curves passing a point P ¼ ðx; y; t þ DtÞ. Our aim is to derive
an expression for the solution of (1.3) at the point Pðx; y; t þ DtÞ in terms of the solution at a point QðxðtÞ; yðtÞ; tÞ lying on the
base of the above characteristic conoid at the level t.

From (2.1) and (2.3) it can be seen that for any fixed choice of ðp1; p2Þ the relation (2.3) can be satisfied by three possible
values of q which are precisely the eigenvalues of matrix pencil p1A1 þ p2A2. Hence the system (1.3) possess three families of
bicharacteristics. It follows from the bicharacteristic Eq. (2.2) that two families of bicharacteristics coincides if they corre-
spond to two values of ðp1; p2Þ which differ only by a constant factor. Thus, it is enough to consider ðp1; p2Þ with
p2

1 þ p2
2 ¼ 1. In what follows we take p1 ¼ cos h; p2 ¼ sin h and denote nðhÞ ¼ ðcos h; sin hÞ; h 2 ½0;2p�. The matrix pencil

A :¼ cos hA1 þ sin hA2 has three eigenvalues k1 ¼ �a0; k2 ¼ 0; k3 ¼ a0; a0 > 0, and a full set of left and right eigenvectors.
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As mentioned above the envelope of the bicharacteristics passing through a fixed point in space–time is called a character-
istic conoid, see Fig. 1; cf. also [17–22], where the notion bicharacteristic cone have been used in a special case of systems
with constant Jacobians. Let us consider the lower part of the characteristic conoid at the point P. Then a wavefront is the
projection on the ðx; yÞ-space of the section of the characteristic conoid by a hyperplane t ¼ const. The vector nðhÞ at any
point determines a unit normal direction to the wavefront, see Fig. 2. A ray is the projection of a bicharacteristic curve onto
the ðx; yÞ-space. Therefore a wavefront is the locus of the tip of the rays. The velocity of these moving points in the plane is
called a ray velocity [5], [28]. For the system (1.3) these ray velocities corresponding to the three bicharacteristic fields can be
determined to be
v1 ¼ ð�a0 cos h;�a0 sin hÞ; v2 ¼ ð0;0Þ; v3 ¼ ða0 cos h; a0 sin hÞ:
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Fig. 1. Characteristic conoid.
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Fig. 2. Wavefronts and rays.
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Time evolution of the rays ðxðtÞ; yðtÞÞ and of the normal vector nðhðtÞÞ can be obtained using the extended lemma on bichar-
acteristics [29]
dx
dt
¼ �a0ðx; yÞ cos h;

dy
dt
¼ �a0ðx; yÞ sin h;

dh
dt
¼ �a0x sin hþ a0y cos h;

dx
dt
¼ 0;

dy
dt
¼ 0;

dh
dt
¼ 0;

dx
dt
¼ a0ðx; yÞ cos h;

dy
dt
¼ a0ðx; yÞ sin h;

dh
dt
¼ a0x sin h� a0y cos h; h 2 ½0;2p�:

ð2:5Þ
For the wave equation system with constant sound speed a0ðx; yÞ � const. the bicharacteristic Eq. (2.5) can be solved imme-
diately to get the bicharacteristics to be straight lines. In Appendix A we derive the solution of the ray Eq. (2.5) and draw the
corresponding characteristic conoid in the case when a0ðx; yÞ is a linear function of x; y. Note that in general the geometry of
the characteristic conoid can be quite complicated, see Figs. 1 and 2. Here the characteristic conoid is obtained by solving the
ray Eq. (2.5) with a0ðx; yÞ ¼ 1þ 1

4 ðsinð4pxÞ þ cosð4pxÞÞ.
Any solution of (2.5) may be represented as x ¼ xðt;xÞ; y ¼ yðt;xÞ; h ¼ hðt;xÞ. Here x ¼ hðtnþ1Þ 2 ½0;2p� is a parameter

and x ¼ const. represents a particular bicharacteristic. From this representation it is clear that the wavefront can be param-
eterized by x. Again, we can see easily from the ray Eq. (2.5) that the third family of bicharacteristics is equivalent to the first
family up to a rotation of the angle h by p. Hence, the first and third family of bicharacteristics create the same characteristic
conoid. The second family of bicharacteristics degenerates to a single line. Thus in our integral representation below it will be
enough to consider the first and second bicharacteristic fields. For the wave equation system (1.3) the transport equations
along the three families of bicharacteristics [27], [28] can be obtained to be
dp
dt
� z0 cos h

du
dt
� z0 sin h

dv
dt
þ z0S ¼ 0 ð2:6Þ

z0 sin h
du
dt
� z0 cos h

dv
dt
þ a0ðpx sin h� py cos hÞ ¼ 0 ð2:7Þ

dp
dt
þ z0 cos h

du
dt
þ z0 sin h

dv
dt
þ z0S ¼ 0; ð2:8Þ
where z0 ¼ a0q0 is the impedance of the medium and S is a source term arising from the multi-dimensionality of the hyper-
bolic system
S :¼ a0fux sin2 h� ðuy þ vxÞ sin h cos hþ vy cos2 hg: ð2:9Þ
In the transport Eqs. (2.6),(2.7),(2.8) the jth equation is valid only along the jth family of bicharacteristics, j ¼ 1;2;3. Our aim
is to derive an evolution operator for the wave equation system (1.3). Fix a point P ¼ ðx; y; tn þ DtÞ and consider the charac-
teristic conoid with P as the apex. Let Qj ¼ QjðxðtnÞ; yðtnÞ; tnÞ; eQ j ¼ eQ jðxðsÞ; yðsÞ; sÞ; j ¼ 1;2;3, be respectively the footpoints
of the jth family of bicharacteristics on the planes t ¼ tn and t ¼ s 2 ðtn; tnþ1Þ (for simplicity we have denoted
xðtn;xÞ; yðtn;xÞ; xðs;xÞ; yðs;xÞ by xðtnÞ; yðtnÞ; xðsÞ and yðsÞ, respectively). We integrate the transport Eq.
(2.6),(2.7),(2.8)along the respective bicharacteristics and take an integral average over the wavefronts. Integrating (2.6) in
time from tn to tnþ1 and using the integration by parts for the second and third terms yield
pðPÞ ¼ pðQ 1Þ þ cos xðz0uÞðPÞ � cos hðz0uÞðQ 1Þ �
Z tnþ1

tn

ðz0a0xuÞðeQ 1Þdsþ sinxðz0vÞðPÞ � sin hðz0vÞðQ 1Þ

�
Z tnþ1

tn

ðz0a0yvÞðeQ 1Þds�
Z tnþ1

tn

ðz0SÞðeQ 1Þds: ð2:10Þ
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Integrate (2.10) over x 2 ½0;2p� and divide by 2p to obtain
pðPÞ ¼ 1
2p

Z 2p

0
ðp� z0u cos h� z0v sin hÞðQ 1Þdx� 1

2p

Z 2p

0

Z tnþ1
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ðz0ða0xuþ a0yvÞÞðeQ 1Þdsdx

� 1
2p

Z 2p

0

Z tnþ1

tn

ðz0SÞð eQ 1Þdsdx: ð2:11Þ
This is the exact integral representation for p. Integrating now (2.7) in time from tn to tnþ1 gives
sin xðz0uÞðPÞ � sin hðz0uÞðQ 2Þ �
Z tnþ1

tn

d
dt
ðsin hz0Þu

� �
ðeQ 2Þds� cos xðz0vÞðPÞ þ cos hðz0vÞðQ 2Þ

�
Z tnþ1

tn

d
dt
ðcos hz0Þv

� �
ðeQ 2Þdsþ

Z tnþ1

tn

ða0ðsin hpx � cos hpyÞÞðeQ 2Þds ¼ 0: ð2:12Þ
Note that the first two integrals in (2.12) disappears due to the ray Eq. (2.5). Now, multiplying (2.12) by sin x and integrating
over x gives
pðz0uÞðPÞ � pðz0uÞðQ 2Þ þ pa0ðQ 2Þ
Z tnþ1

tn

pxðeQ 2Þds ¼ 0: ð2:13Þ
Multiply (2.10) by cosx and integrate over x to get
pz0ðPÞuðPÞ ¼
Z 2p

0
ð�pþ z0u cos hþ z0v sin hÞðQ1Þ cos xdþ

Z 2p

0
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ðz0ða0xuþ a0yvÞÞðeQ 1Þ cos xdsdx

þ
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0

Z tnþ1
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ðz0SÞðeQ 1Þ cos xdsdx: ð2:14Þ
Adding (2.13) and (2.14) and rearranging yields
uðPÞ ¼ 1
2pz0ðPÞ

Z 2p

0
ð�pþ z0u cos hþ z0v sin hÞðQ 1Þ cos xdxþ 1

2pz0ðPÞ

Z 2p

0

Z tnþ1

tn

z0ða0xuþ a0yvÞðeQ 1Þ cos xdsdx
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2

uðQ 2Þ �
1
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0

Z tnþ1

tn

ðz0SÞðeQ 1Þ cos xdsdx: ð2:15Þ
This is the exact integral representation of u. Analogously the exact integral representation for t can be derived
vðPÞ ¼ 1
2pz0ðPÞ

Z 2p

0
ð�pþ z0u cos hþ z0v sin hÞðQ 1Þ sin xdxþ 1

2pz0ðPÞ

Z 2p

0

Z tnþ1

tn

ðz0ða0xuþ a0yvÞÞðeQ 1Þ sin xdsdx

þ 1
2

vðQ 2Þ �
1

2q0ðPÞ

Z tnþ1

tn

pyðeQ 2Þdsþ 1
2pz0ðPÞ

Z 2p

0

Z tnþ1

tn

ðz0SÞðeQ 1Þ sin xdsdx: ð2:16Þ
In order to be consistent with our previous papers in what follows we put Q � Q 1 and Q 0 � Q 2.

Remark 2.1. Note that in [17,18,26] the exact evolution operator is derived in a slightly different way. It should be pointed
out that the previous procedure will yield the same evolution operator as we have obtained here.
3. Approximate evolution operator

In this section we approximate the exact integral representation (2.11),(2.15) and (2.16) by suitable numerical quadra-
tures and derive the corresponding approximate evolution operators.

Note that the exact integral equations contain time integrals involving the derivatives of the unknown variables. These
are the terms that need our attention. First, let us consider in (2.15), (2.16) the integrals of px and py along a time like bichar-
acteristic. In order to eliminate these integrals we use the differential Eq. (1.3) and replace px and py. Integration of the sec-
ond equation of (1.3) in time gives
1
2

uðPÞ � 1
2

uðQ 0Þ ¼ �
1

2q0ðPÞ

Z tnþ1

tn

pxðeQ 0Þds: ð3:1Þ
Thus, plugging (3.1) in (2.15) the integral containing px disappears. The integral of py in (2.16) is treated analogously. This
yields the following equivalent formulation of the exact integral equations for u;v that is the base for the so-called EG1
approximate evolution operator, cf. [17]:
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uðPÞ ¼ 1
pz0ðPÞ

Z 2p

0
ð�pþ z0u cos hþ z0v sin hÞðQÞ cos xdxþ 1

pz0ðPÞ

Z 2p

0
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tn

z0ða0xuþ a0yvÞð eQ Þ cos xdsdx

þ 1
pz0ðPÞ

Z 2p

0

Z tnþ1

tn

ðz0SÞð eQ Þ cos xdsdx ð3:2Þ

vðPÞ ¼ 1
pz0ðPÞ

Z 2p

0
ð�pþ z0u cos hþ z0v sin hÞðQÞ sinxdxþ 1

pz0ðPÞ

Z 2p

0

Z tnþ1

tn

ðz0ða0xuþ a0yvÞÞðeQ Þ sin xdsdx

þ 1
pz0ðPÞ

Z 2p

0

Z tnþ1

tn

ðz0SÞð eQ Þ sin xdsdx: ð3:3Þ
On the other hand, the integral representation (2.11), (2.15), (2.16) can still be used as a base for the approximate evolution
operator. In the so-called EG3 framework the time integrals of px and py are first approximated by the rectangle rule at time
s ¼ tn. The resulting terms at tn are further approximated by an integral average along the wavefront. An application of the
Gauss theorem then enables us to replace the derivatives, see [17]. In order to use the averages along wavefronts one re-
quires the exact form of the wavefront. In the next section we will show that the wavefronts can be approximated by circles
up to the second order accuracy. Using the approximate wavefront given in Section 3.1 the FVEG method based on the EG3
approximate evolution operator has been derived and implemented. However our numerical experiments indicate that the
EG1 approximate evolution operator yields better accuracy than the application of the EG3 operator. In what follows we re-
strict therefore to the FVEG scheme using the EG1 approximate evolution operator.

Henceforth we assume Dx ¼ OðDtÞ;Dy ¼ OðDtÞ due to the CFL stability condition
maxfmax
x;y

a0ðx; yÞDt=Dx;max
x;y

a0ðx; yÞDt=Dyg < m; ð3:4Þ
where m 6 1 is the corresponding stability limit.

3.1. Approximation of the wavefront

As follows from (2.5) the geometry of the wavefront is described by the angle h ¼ hðtn;xÞ. In this section we will show
that the wavefronts are circles up to second order accuracy. This allows us to evaluate spatial integrals in (2.11),(3.2) and
(3.3) efficiently. The spatially varying wave speed, which determines the radius of these circles, offers two possibilities to
approximate the wavefront: a single circle or arcs of circles that are related to the computational grid, see Fig. 3. Using
our previous results from [18] we can evaluate for any polynomial function all spatial integrals along circles or arcs of circles
exactly. This is a crucial step in the construction of the FVEG schemes. Indeed, we take all of the infinitely many directions of
wave propagations explicitly into account. Moreover exact integration of piecewise polynomial approximate functions yields
a very efficient numerical method, much more accurate then standard finite volume schemes [18], [20].

Let us note that if the wave speed a0 is given by a linear function then the wavefronts are in fact circles. This can be shown
analytically, see Appendix A. The centers of circles are then dependent on the gradient of a0. This can be used in the vicinity
of our bilinear reconstruction. On the other hand in order to keep the approximate evolution operator simple we can still use
circles with center at Q 0. Our numerical experiments confirm that this yields a scheme which is at least twice faster while
having similar accuracy. In fact, differences in the global errors were just marginal.

Since the independent variable of the integrals in (2.11),(3.2) and (3.3) is x we are looking for an approximation of h in
terms of x. The normal of the wavefront of the first bicharacteristic family is described by, cf. (2.5),
dh
dt
¼ �a0x sin hþ a0y cos h; hðtnþ1Þ ¼ x:
Approximate wave front consisting of 4 arcs of circles; relative position of boundary terms and wave speeds for a vertex of computational grid.
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Due to the CFL condition (3.4) the wavefront will never exceed one cell of the computational grid. Thus we can assume
a0ðx; yÞ ¼ �a0 þ OðDxÞ; �a0x ðx; yÞ ¼ �a0x þ OðDxÞ; �a0yðx; yÞ ¼ �a0y þ OðDxÞ; ð3:5Þ
where �a0; �a0x ; �a0y are arbitrary but fixed first order approximations of the wave speed and its derivatives at
ðxðtnþ1Þ; yðtnþ1ÞÞ; x ¼ xðtnþ1Þ þ OðDxÞ; y ¼ yðtnþ1Þ þ OðDxÞ. This implies
hðtnÞ ¼ hðtnþ1Þ þ
dh
dt

����
t¼tnþ1

ðtn � tnþ1Þ þ OðDt2Þ

¼ x� ½��a0x sin xþ �a0y cos x�Dt þ OðDt2Þ ð3:6Þ
¼ xþ OðDtÞ: ð3:7Þ
The ray equation for the x-component of the first bicharacteristic family reads
dx
dt
¼ �a0ðx; yÞ cos h:
Using (3.5) and (3.7) we obtain
dx
dt
¼ ��a0 cos xþ OðDtÞ:
Assuming without loss of generality xðtnþ1Þ ¼ 0 and integrating in time from tnþ1 to tn yield
xðtn;xÞ ¼ �a0Dt cos xþ OðDt2Þ:
The expression for y-component is derived similarly. The approximations for x and y are fundamental for further derivations.
They indeed give the opportunity to approximate the wavefront by circles centered at ðxðtnþ1Þ; yðtnþ1ÞÞ and parameterized by
x

Qðx; y; tnÞ ¼
xðtn;xÞ
yðtn;xÞ

� �
¼ �a0Dt

cos x
sin x

� �
þ OðDt2Þ

1
1

� �
: ð3:8Þ
Let f 2 C1 be any function to be evaluated on the wavefront then by the Taylor expansion
f ðQÞ ¼ f ð�a0Dt cos x; �a0Dt sinxÞ þ OðDt2Þ: ð3:9Þ
This leads us to the following definition of the approximate wavefront:
fQ :¼ ð�a0Dt cos x; �a0Dt sin xÞT ; x 2 ½0;2p�g: ð3:10Þ
As we have already pointed out �a0 might be defined such that
�a0 ¼ �a0ðxÞ; �a0x ¼ �a0x ðxÞ; �a0y ¼ �a0y ðxÞ; x 2 ½0;2p�: ð3:11Þ
The dependency on x gives the opportunity to approximate the wavefront by parts of circles according to the computational
grid. For example, if the point P ¼ ðxðtnþ1Þ; yðtnþ1ÞÞ is a vertex of the computational grid consisting of rectangles, the wave-
front can be created by four different arcs of circles, cf. Fig. 3.

3.2. Approximations of the exact integral representation

Let us first approximate the following mantle integral:
Z 2p

0

Z tnþ1

tn

z0ða0xuþ a0yvÞð eQ Þf ðxÞ dsdx ð3:12Þ
that appears in (2.11), (3.2) and (3.3) with f ðxÞ ¼ 1; f ðxÞ ¼ cos x and f ðxÞ ¼ sin x, respectively. Applying the rectangle rule
at s ¼ tn for time integration gives the OðDt2Þ error at one time step. The exact wavefront is then replaced by the approximate
wavefront (3.10) and h is approximated by (3.7). The wave speed a0 and its spatial derivatives are approximated by (3.5),
where �a0; �a0x ; �a0y can be taken from the corresponding bilinear recovery. This yields the first order approximation. Note how-
ever that in the mantle integrals the first order terms are further multiplied by Dt that arises from the time integration. This
gives the desired second order accuracy.

For the integrals involving the multi-dimensional source term S, cf. (2.9), and for the integrals along the bottom of cone a
special treatment will be required.

3.2.1. Integrals involving the multi-dimensional source term S
In order to eliminate spatial derivatives in the multi-dimensional source term S the so-called useful lemma, cf. [17], is

used. In the case of spatially dependent wave speed the wavefront might be approximated by arcs of circles and the integra-
tion by parts gives additional boundary terms.
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Lemma 3.1. Extended useful lemma
Let w 2 C1ðR2Þ; p 2 C1ðRÞ;C ¼ ða cosx; a sin xÞ; a 2 R; /1 2 ½0;2p�; /2 2 ½0;2p�. Then
Z /2

/1

pðxÞ½wxðCÞ sin x�wyðCÞ cos x�dx ¼ 1
a

Z /2

/1

p0ðxÞwðCÞdxþ pð/1ÞwðCð/1ÞÞ � pð/2ÞwðCð/2ÞÞ
� �

:

Proof. Apply integration by parts, cf. [17], and take boundary terms into account. h

From [30] we note that the multi-dimensional source term S contains tangential derivatives of u and t for any curve with
unit normal ðcos h; sin hÞ and hence extended useful lemma holds not only for the case when the wavefront consists of parts
of circles but even for arbitrary curves. Let us point out that even if the wavefront is represented by a single circle the bound-
ary terms occur due to discontinuities of the numerical approximation. These small jump terms might be neglected since the
approximations converge. All numerical tests presented in the Section 5 indicate that if the boundary terms are included
results are slightly more accurate. In fact, if the boundary terms are included the computational costs increase mostly at
10%. The global error is improved typically at the second nonzero digit.

Since z0 ¼ cp0
a0

we have z0S ¼ cp0ðS=a0Þ, note that cp0 is a constant and S contains a factor a0. Applying the rectangle rule in
time for the mantle integral involving S in (2.11) yields
I1 :¼
Z 2p

0

Z tnþ1

tn

S
a0

� �
ðeQ Þdsdx ¼ Dt

Z 2p

0

S
a0

� �
ðQÞdxþ OðDt2Þ:
Note that here Q is still a function of h ¼ hðtn;xÞ. Applying the first order approximation of h (3.7), the approximate wave-
front (3.10) and (3.9) yields
I1 ¼
Z 2p

0
ðux sin2 x� ðuy þ vxÞ cos x sinxþ vy cos2 xÞðQÞdxþ OðDt2Þ:
Let us consider a vertex of a computational grid consisting of rectangles, cf. Section 4. We want to predict a solution at this
vertex. The approximate wavefront is then divided into four slices whose boundaries can be symbolized by the angles
/j ¼ jp=2 for j ¼ 0;1; . . . ;4. We define for any function f and angle /, cf. Fig. 3,
f ðQð/�ÞÞ :¼ lim
~/!/�

f ðQð~/ÞÞ; f ðQð/þÞÞ :¼ lim
~/!/þ

f ðQð~/ÞÞ:
Due to (3.11) different choices of �a0 according to the cells neighboring the vertex are possible. We will express this in the
next formulae by �aj

0; j ¼ 0; . . . ;3. Application of Lemma 3.1gives
I1 ¼
X3

j¼0
/j¼jp=2

1
�aj

0

Z /jþ1

/j

ðu cosxþ v sin xÞðQÞdx

 !
þ
X3

j¼0
/j¼jp=2

1
�aj

0

½ðu sin /j � v cos /jÞðQð/þj ÞÞ � ðu sin /jþ1

� v cos /jþ1ÞðQð/�jþ1ÞÞ� þ OðDt2Þ: ð3:13Þ
Note that the first sum of integrals on the right hand side can be written equivalently as
Z 2p

0

1
�a0
ðu cos xþ v sinxÞðQÞdx;
where �a0 ¼ �a0ðxÞ or �a0 ¼ const. The mantle integrals involving the multi-dimensional source term S in (3.2), (3.3) are
approximated in an analogous way.

3.2.2. Integrals along the bottom of cone
Since in the integrals along the bottom of cone there is no extra factor Dt arising from the time integration we need to

approximate h in terms of x up to second order. Let us consider
I2 :¼
Z 2p

0
ðz0ðu cos hþ v sin hÞÞðQÞf ðxÞdx;
that appears in (2.11), (3.2), (3.3) with f ðxÞ ¼ 1; f ðxÞ ¼ cos x and f ðxÞ ¼ sin x, respectively. Using (3.6), the Taylor expan-
sion of trigonometric functions and (3.9) lead to
I2 ¼
Z 2p

0
ðz0ðu cos xþ v sin xÞÞðQÞf ðxÞdxþ Dt

Z 2p

0
ðz0½u sinx� v cos x�½��a0x sinxþ �a0y cos x�ÞðQÞf ðxÞdxþ OðDt2Þ;

ð3:14Þ
that is the desired second order approximation.
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3.2.3. The approximate evolution operator
Applying the rectangle rule in time and the approximations (3.13), (3.14) to the exact integral representation (2.11),(3.2),

(3.3) we obtain the following approximate evolution operator for the wave equation system with variable wave speed:
pðPÞ ¼ 1
2p

Z 2p

0
ðp� z0ðu cosxþ v sin xÞÞðQÞdx

�
� Dt

Z 2p

0
ðz0½u sinx� v cos x�½��a0x sinxþ �a0y cos x�ÞðQÞdx� Dt

Z 2p

0
ðz0ð�a0x uþ �a0y vÞÞðQÞdx

� cp0

X3

j¼0
/j¼jp=2

1
�aj

0

Z /jþ1

/j

ðu cos xþ v sinxÞðQÞdxþ ðu sin /j � v cos /jÞðQð/þj ÞÞ
"

�ðu sin /jþ1 � v cos /jþ1ÞðQð/�jþ1ÞÞ
ii
þ OðDt2Þ;

uðPÞ ¼ 1
pz0ðPÞ

Z 2p

0
ð�pþ z0ðu cos xþ v sin xÞÞðQÞ cos xdx

�
þ Dt

Z 2p

0
ðz0½u sinx� v cos x�½��a0x sinxþ �a0y cos x�ÞðQÞ cosðxÞdx

þ Dt
Z 2p

0
ðz0ð�a0x uþ �a0y vÞÞðQÞ cos xdx

þ cp0

X3

j¼0
/j¼jp=2

1
�aj

0

Z /jþ1

/j

ðuð2 cos2 x� 1Þ þ 2v cos x sin xÞðQÞdx

"

þ ðu cos /j sin /j � v cos2 /jÞðQð/þj ÞÞ

�ðuðcos /jþ1 sin /jþ1Þ � v cos2 /jþ1ÞðQð/�jþ1ÞÞ
ii
þ OðDt2Þ;

vðPÞ ¼ 1
pz0ðPÞ

Z 2p

0
ð�pþ z0ðu cos xþ v sinxÞÞðQÞ sin xdx

�
þ Dt

Z 2p

0
ðz0½u sinx� v cos x�½��a0x sinxþ �a0y cos x�ÞðQÞ sinðxÞdx

þ Dt
Z 2p

0
ðz0ð�a0x uþ �a0y vÞÞðQÞ sin xdx

þ cp0

X3

j¼0
/j¼jp=2

1
�aj

0

Z /jþ1

/j

ð2u cos x sin xþ vð2 sin2 x� 1ÞðQÞdx

"

þ ðu sin2 /j � v cos /j sin /jÞðQð/þj ÞÞ

�ðuðsin2 /jþ1Þ � v cos /jþ1 sin /jþ1ÞðQð/�jþ1ÞÞ
ii
þ OðDt2Þ:
Note that if a0 is constant then cp0=a0 ¼ z0 is constant as well. In this case the approximate evolution operator proposed here
coincides with the approximate evolution operator EG1 given in [17] if the jump boundary terms at Qð/þj Þ and Qð/�jþ1Þ are
omitted.

4. Finite volume evolution Galerkin method

Let us divide a computational domain X into a finite number of regular finite volumes Xij :¼ ½iDx; ðiþ 1ÞDx��
½jDy; ðjþ 1ÞDy� for i ¼ 0; . . . ;M; j ¼ 0; . . . ;N; Dx;Dy are the mesh steps in x- and y-directions, respectively. Denote by Un

ij

the piecewise constant approximate solution on a mesh cell Xij at time tn and start with initial approximations obtained
by the integral averages U0

ij ¼ 1
jXij j
R

Xij
Uð�;0Þ. Integrating the conservation law (1.2) and applying the Gauss theorem on

any mesh cell Xij yield the following update formula for the finite volume evolution Galerkin scheme:
Unþ1
ij ¼ Un

ij �
Dt
Dx

dij
x
�f nþ1=2

1 � Dt
Dy

dij
y
�f nþ1=2

2 : ð4:1Þ
Here dij
x ; d

ij
y stand for the central difference operators in x or y-direction and �f nþ1=2

k ; k ¼ 1;2, represents an approximation to
the cell interface flux at the intermediate time level tn þ Dt=2. We evolve the cell interface fluxes �f nþ1=2

k to tn þ 1=2 using
the approximate evolution operator denoted by EDt=2 and average them along the cell interface E
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�f nþ1=2
k :¼

X
j

xjfkðEDt=2UnðxjðEÞÞÞ; k ¼ 1;2: ð4:2Þ
Here xjðEÞ are the nodes and xj the weights of the quadrature for the flux integration along the edges.

4.1. Staggered grid

In order to evaluate cell interface fluxes �f nþ1=2
k ; k ¼ 1;2, we need to approximate spatially varying a0 and z0. The most nat-

ural approach is to use the cell averages �a0ij
¼ 1
jXij j
R

Xij
a0 and �z0ij

¼ 1
jXij j
R

Xij
z0. In this case a0 and z0 are approximated on the
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Fig. 4. Flawed solution without staggered grid approximation for the wave speed and impedance.
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Fig. 5. Solution with staggered grid approximation for the wave speed and impedance.

Fig. 6. Staggered grid and quadrature nodes.
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same grid as conservative variables and they are discontinuous along cell interfaces. In what follows we will show that this
approach leads to artificial kinks at interfaces.

In order to illustrate the above phenomena let us consider the following example, cf. [13]. Set c ¼ 1 ¼ p0. The wave speed
is:
Table 1
Data fo

Isentrop
Backgro

Wave s

Initial p

Final ti
Compu
Bounda
a0ðxÞ :¼
1:0 if x < 0
0:5 if x P 0;

	

initial pressure and velocity read
pðxÞ ¼ uðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðxþ 3Þ2

q
if � 4 < x < �2;

0 otherwise:

(

The computational domain is the interval ½�5; 5�. Absorbing boundary conditions have been implemented by extrapolating
all variables. We set the end time to t ¼ 3:1 and use a mesh with 200 cells. In the second order FVEG method the minmod
r the one-dimensional test cases.

Example 1 Example 2 Example 3

ic exponent c 1.4
ffiffiffi
3
p

1.4
und pressure p0 1.0 0.5 320=119 � 2:69

peed a0 1þ 1
2 cosð4pxÞ 1þ 1

2 sinð10pxÞ 0:6 if 0:35 < x < 0:65
2:0 otherwise

ressure p sinð2pxÞ 1:75� 0:75 cosð10px� 4pÞ if 0:4 < x < 0:6
1:0 otherwise

me t ¼ 1:0 t ¼ 0:3
tational domain X ¼ ½0; 1�
ry condition Periodic
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Fig. 7. Example 1 with a smooth wave speed.
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limiter was used in order to limit overshoots and undershoots of linearly recovered approximations. In Fig. 4 both compo-
nents of the solution at time t ¼ 3:1 are depicted. We can clearly recognize artificial overshoots as the wave runs through the
interface at x ¼ 0.

This effects can be explained by the following analysis. Let us reconsider the evolution Galerkin operator simplified to first
order and apply it on a one-dimensional x-dependent data. Assume that derivatives of u are bounded and omit all OðDtÞ terms
pðPÞ ¼ 1
2p

Z 2p

0
ðp� z0u cos xÞðQÞdxþ OðDtÞ

uðPÞ ¼ 1
pz0ðPÞ

Z 2p

0
ð�pþ z0u cos xÞðQÞ cos xdxþ OðDtÞ:
It is easy to realize that the term z0u yields difficulties. Using piecewise constant approximation and predicting pðPÞ at cell
interface we obtain
1
2p

Z 2p

0
ðz0uÞðQÞ cos xdx ¼ 1

p
z0r þ z0 l

2
ður � ulÞ þ ðz0r � z0 lÞ

ur þ ul

2

� �
:

It is the discontinuity of impedance z0 along the integration path that yields a jump term. In order to achieve continuous
approximation of z0 we can replace z0 l and z0r by their average ðz0 l þ z0rÞ=2. Choosing such an approximation the jump term
disappears and the artificial kinks vanish in numerical experiments as demonstrated in plots of Fig. 5.

The above example clearly indicates that the discontinuous approximation of z0 along an integration path has to be
avoided. To overcome the above problem we introduce the so-called staggered grid feXklgk;l, where eXkl :¼ ½ðk� 1ÞDx=2;
ðkþ 1ÞDx=2� � ½ðl� 1ÞDy=2; ðlþ 1ÞDy=2� for k ¼ 0; . . . ;M; l ¼ 0; . . . ;N. The staggered grid will be used in the predictor (evo-
lution) step in order to approximate the wave speed a0 and the impedance z0.

For the flux integration along cell interfaces in (4.2) the trapezoidal rule has been used. Thus, the quadrature nodes are the
vertices of computational cells and each cell eXkl of the staggered grid is associated to the corresponding quadrature node, see
Fig. 6. Note that the use of midpoint rule would reduce the FVEG method to a standard dimensional splitting Godunov-type
scheme. It should be pointed out that we can still approximate the wave front by one circle or by arcs of circles, cf. (3.11). Our
numerical experiments indicate only marginal differences between these two approximations. In what follows we represent
for simplicity the wave front by a single circle. Now, along the whole integration path continuous approximation of a0 and z0

on eXkl is used and no spurious oscillations develop.
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Fig. 8. Example 2 with nonsmooth initial pressure.
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Fig. 9. Example 3 with a discontinuous wave speed.

Table 2
L1 errors and experimental order of convergence; Example 1 with a smooth wave speed, reference solution: 409 600 cells.

N L1 error of p EOC L1 error of u EOC L1 error of q0u EOC

25 7.65e�02 4.53e-02 8.80e�02
50 2.60e�02 1.557 1.46e�02 1.633 2.82e�02 1.642
100 5.87e�03 2.146 4.30e�03 1.763 7.23e�03 1.962
200 1.41e�03 2.053 9.60e�04 2.164 1.65e�03 2.134
400 3.40e�04 2.056 2.23e�04 2.107 3.93e�04 2.065
800 8.39e�05 2.017 5.40e�05 2.044 9.75e�05 2.012
1600 2.09e�05 2.005 1.33e�05 2.018 2.44e�05 2.000
3200 5.22e�06 2.001 3.31e�06 2.008 6.09e�06 1.998
6400 1.30e�06 2.000 8.25e�07 2.004 1.52e�06 1.999
12 800 3.26e�07 2.001 2.06e�07 2.002 3.81e�07 2.000

Table 3
L1 errors and experimental order of convergence; Example 2, reference solution: 409 600 cells.

N L1 error of p EOC L1 error of u EOC L1 error of q0u EOC

25 7.66e�02 8.80e�02 9.19e�02
50 3.74e�02 1.033 3.22e�02 1.448 4.52e�02 1.023
100 1.41e�02 1.406 1.19e�02 1.442 1.91e�02 1.240
200 3.81e�03 1.891 2.99e�03 1.988 5.54e�03 1.788
400 8.93e�04 2.092 7.47e�04 1.999 1.34e�03 2.043
800 2.16e�04 2.049 1.94e�04 1.944 3.27e�04 2.038
1600 5.41e�05 1.995 5.05e�05 1.943 8.20e�05 1.994
3200 1.37e�05 1.985 1.30e�05 1.960 2.07e�05 1.986
6400 3.45e�06 1.986 3.30e�06 1.974 5.22e�06 1.986
12 800 8.72e�07 1.983 8.39e�07 1.977 1.32e�06 1.985
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In order to obtain the second order scheme a recovery procedure has to be applied. The solution components p;u and t are
recovered using usual bilinear recovery, cf. [18]. Analogously, the wave speed a0 and the impedance z0 are recovered on the
staggered grid. The slopes are limited by a suitable limiter at each time step. In our numerical experiments we worked with
the minmod and the monotonized minmod limiters, cf. [13].

We should point out that the use of staggered grid approach in order to model spatially varying wave speeds is a novel
feature of the FVEG method developed in this paper.

5. Numerical experiments

In this chapter we illustrate behaviour of the new FVEG method on a set of one- and two-dimensional experiments with
continuous as well as discontinuous wave speeds. All experiments have been done with two-dimensional FVEG method. In
the case of one-dimensional experiments we have imposed zero velocity v ¼ 0 and use simply the midpoint rule for the flux
integration along cell interfaces. In all our experiments we have set the CFL number m ¼ 0:55 which is in agreement with our
previous theoretical stability analysis [22]. Since the main aim of this section is to test accuracy and robustness of the newly
developed FVEG scheme, we confine ourselves to test problems with simple boundary conditions, e.g. periodic or extrapo-
lation boundary conditions. The reader is referred to [21] for more detailed study on various techniques for implementation
of reflected and absorbing boundary conditions in the framework of the evolution Galerkin scheme.

5.1. One-dimensional experiments

The first experiment is motivated by [17], the other two one-dimensional tests are motivated by [1]. In all test cases the
initial velocities u and t are set to zero. Data setting for the corresponding experiments are given in Table 1. All results of the
one-dimensional experiments presented in Figs. 7–9 are computed on a mesh with 100 cells, the reference solutions have
been computed on a mesh with 25 600 cells. The dashed line plots are the initial conditions. The results have been also used
for the evaluation of the experimental order of convergence (EOC) and no slope limiter has been applied here.

5.1.1. Example 1: smooth data
In this experiment we study behaviour of the scheme for smoothly varying wave speed, cf. Fig. 7. We can notice that even

on a mesh with 100 cells all qualitative properties of the solution are well resolved. Table 2 demonstrates the second order
accuracy of the FVEG scheme using bilinear recovery.
Table 4
L1 errors and experimental order of convergence; Example 3 with a discontinuous wave speed, reference solution: 409 600 cells.

N L1 error of p EOC L1 error of u EOC L1 error of q0u EOC

25 1.03e�01 2.12e�02 7.99e�02
50 4.08e�02 1.334 1.51e�02 0.484 6.81e�02 0.230
100 5.36e�03 2.928 1.94e�03 2.965 5.78e�03 3.558
200 1.24e�03 2.108 4.88e�04 1.987 1.89e�03 1.610
400 3.15e�04 1.981 1.20e�04 2.023 5.13e�04 1.883
800 9.40e�05 1.743 3.11e�05 1.948 1.53e�04 1.741
1600 2.06e�05 2.192 7.48e�06 2.056 3.42e�05 2.166
3200 6.04e�06 1.768 1.95e�06 1.938 1.00e�05 1.773
6400 1.33e�06 2.182 4.72e�07 2.047 2.19e�06 2.187
12 800 2.87e�07 2.210 9.90e�08 2.253 4.54e�07 2.272
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Fig. 10. Example 5.2.1, graph and isolines of spatially varying wave speed a0.
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5.1.2. Examples 2 and 3: nonsmooth data
These experiments are motivated by LeVeque [1]. Note that in [1] p0 –const: and thus our results can not be directly com-

pared with those presented by LeVeque et al. We therefore calculated c and p0 such that the average of the impedance used
here and the average of the impedance used in [1] coincide.

Note that the initial condition of pressure in Examples 2 and 3 is only C1, not C2 as we assumed in the derivations using
the local truncation analysis. Numerical experiments still indicate that the scheme is second order accurate, cf. Table 3. In the
Example 3 there is an additional difficulty as the wave speed is discontinuous. The reconstruction of the wave speed is al-
ways set to constant function, as otherwise a slope of Oð1=DxÞ will be created at the discontinuity. Note that no slope limiter
has been used here due to the EOC measurements.

Interestingly, the EOC values in Table 4 seem to oscillate in some sense. This can be explained in the following way. The
values for z0 and a0 on the staggered grid are automatically created by our implementation. This procedure uses midpoint rule
for approximation of the cell averages. One can show that then for different resolutions a numerical discontinuity can be right
to or left to the analytical discontinuity. This is true for both discontinuities of the wave speed. Furthermore, the left and right
discontinuities are in this sense independent from each other. We believe that this is the source of the described behaviour in
the Table 4. Since the implementation handles the situation fully automatically and the EOCs are overall close to second order,
this is in fact advantageous, because there is no need of a special treatment of the wave speed in such a situation.

We can notice in Fig. 9 that there is a small kink in the velocity field at the discontinuity of the wave speed. Even if one
apply a minmod limiter this kink still remains there but vanishes as the mesh is refined.

5.2. Two-dimensional experiments

All numerical experiments presented in Figs. 10–15 are computed on a mesh with 400� 400 cells. The two-dimensional
tests confirm the expected second order accuracy and show good resolution, especially in the radially symmetric test case.
This confirms the reliability and robustness of truly multi-dimensional FVEG scheme.

5.2.1. Wave propagation in a medium with smoothly varying wave speed
Motivated by [17] we tested truly two-dimensional wave propagation in a medium with smoothly varying wave speed.

Set c ¼ 1:4 and p0 ¼ 1:0. The wave speed and the initial pressure are given by
a0ðx; yÞ ¼ 1þ 1
4
ðsinð4pxÞ þ cosð4pyÞÞ;

pðx; yÞ ¼ sinð2pxÞ þ cosð2pyÞ;

respectively, see Fig. 10 for the graph of waves speed. The initial velocities u and t are set to zero. The computational domain
is ½0; 1� � ½0; 1� with periodic boundary conditions and the final time is set to t ¼ 1:0.

In Fig. 11 the graphs and isolines of the initial pressure and all components of the final solution are depicted.
Furthermore, in order to demonstrate good approximation properties of the newly developed FVEG method we compare

the L1 errors with those obtained by some standard second order method. In particular, we have chosen the Lax-Wendroff
finite difference method (rotated Richtmyer version), see, e.g., [25]. For completeness, let us recall that the Lax-Wendroff
scheme can be also formulated as a predictor–corrector method in the following way:
Unþ1=2
iþ1=2;jþ1=2 ¼ lxlyU � 1

2
Dt
Dx

lydxf 1 þ
Dt
Dy

lxdyf 2

� �� 
n

iþ1=2;jþ1=2
;

Unþ1
i;j ¼ Un

i;j �
Dt
Dx

lydxf 1 þ
Dt
Dy

lxdyf 2

� 
nþ1=2

i;j
:

Here l denotes an averaging operator and d a standard central difference operator.
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Fig. 12. Radially symmetric wave speed a0.





Fig. 14.Solution isolines fort¼0:2 andt¼0:4.
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In the following Tables 5 and 6 the experimental order of convergence is computed by comparing the L1 errors of two
succeeding solutions for the FVEG and the Lax-Wendroff scheme, respectively. Numerical experiments again clearly demon-
strate the desired second order of convergence of both schemes. Note however, that the FVEG scheme is much more accurate
than the Lax-Wendroff scheme. In fact, the error of the FVEG scheme is about 10 times smaller than that of the Lax-Wendroff
scheme.
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Table 8
L1 errors and experimental order of convergence for the test with radially symmetric wave speed by the Lax-Wendroff scheme.

N Nref L1 error of p EOC L1 error of u EOC L1 error of q0u EOC

25 50 7.12e�02 8.91e�03 1.57e�01
50 100 2.44e�02 1.545 3.00e�03 1.569 6.03e�02 1.384
100 200 6.81e�03 1.842 8.28e�04 1.858 1.75e�02 1.786
200 400 1.79e�03 1.929 2.16e�04 1.939 4.62e�03 1.917
400 800 4.45e�04 2.005 5.36e�05 2.009 1.16e�03 1.992
800 1600 1.09e�04 2.028 1.32e�05 2.026 2.85e�04 2.026
1600 3200 2.72e�05 2.005 3.27e�06 2.006 7.11e�05 2.002

Table 7
L1 errors and experimental order of convergence for the test with radially symmetric wave speed by the FVEG scheme.

N Nref L1 error of p EOC L1 error of u EOC L1 error of q0u EOC

25 50 2.58e�02 3.47e�03 6.85e�02
50 100 5.29e�03 2.287 6.72e�04 2.369 1.44e�02 2.255
100 200 8.41e�04 2.651 1.08e�04 2.635 2.37e�03 2.599
200 400 1.37e�04 2.614 1.88e�05 2.526 4.29e�04 2.465
400 800 2.69e�05 2.352 4.04e�06 2.215 9.37e�05 2.194
800 1600 6.39e�06 2.072 9.92e�07 2.026 2.32e�05 2.010
1600 3200 1.61e�06 1.991 2.50e�07 1.987 5.91e�06 1.975

Table 6
L1 errors and experimental order of convergence of the Lax-Wendroff scheme; Example 5.2.1.

N Nref L1 error of p EOC L1 error of u EOC L1 error of q0u EOC

25 50 1.00e�01 3.75e�02 6.00e�02
50 100 2.27e�02 2.142 2.17e�02 0.792 3.46e�02 0.793
100 200 8.40e�03 1.434 4.75e�03 2.189 7.92e�03 2.128
200 400 2.13e�03 1.977 1.16e�03 2.029 1.99e�03 1.995
400 800 5.32e�04 2.003 2.90e�04 2.003 5.00e�04 1.991
800 1600 1.33e�04 1.997 7.24e�05 2.002 1.25e�04 1.999
1600 3200 3.33e�05 1.998 1.81e�05 2.001 3.13e�05 1.999

N Nref L1 error of v EOC L1 error of q0v EOC

25 50 4.49e�02 6.37e�02
50 100 2.26e�02 0.990 3.44e�02 0.888
100 200 4.80e�03 2.235 7.76e�03 2.148
200 400 1.14e�03 2.075 1.88e�03 2.044
400 800 2.81e�04 2.020 4.67e�04 2.009
800 1600 6.98e�05 2.007 1.16e�04 2.004
1600 3200 1.74e�05 2.002 2.91e�05 2.001

Table 5
L1 errors and experimental order of convergence of the FVEG scheme; Example 5.2.1.

N Nref L1 error of p EOC L1 error of u EOC L1 error of q0u EOC

25 50 3.32e�02 1.23e�02 2.06e�02

50 100 8.66e�03 1.937 3.20e�03 1.935 5.83e�03 1.822
100 200 1.65e�03 2.390 5.87e�04 2.449 1.08e�03 2.432
200 400 3.05e�04 2.439 1.32e�04 2.153 2.28e�04 2.247
400 800 6.40e�05 2.249 3.28e�05 2.009 5.44e�05 2.063
800 1600 1.48e�05 2.111 8.33e�06 1.976 1.38e�05 1.983
1600 3200 3.59e�06 2.046 2.11e�06 1.979 3.50e�06 1.975

N Nref L1 error of v EOC L1 error of q0v EOC

25 50 1.53e�02 2.17e�02
50 100 3.82e�03 2.001 6.01e�03 1.852
100 200 7.37e�04 2.373 1.23e�03 2.284
200 400 1.55e�04 2.246 2.57e�04 2.263
400 800 3.81e�05 2.028 6.23e�05 2.043
800 1600 9.65e�06 1.980 1.58e�05 1.981
1600 3200 2.44e�06 1.982 4.01e�06 1.977

584 K.R. Arun et al. / Journal of Computational Physics 228 (2009) 565–590



K.R. Arun et al. / Journal of Computational Physics 228 (2009) 565–590 585
The isentropic exponent c is set to 1.4. The background pressure is p0 ¼ 1:0 and the initial pressure is a C2 function given
in the following way:
�pðxÞ :¼ �2x6 þ 6x4 � 6x2 þ 2

pðx; yÞ ¼
�pððr � 0:5Þ=0:18Þ if jr � 0:5j < 0:18
0 otherwise:

	

The computational domain is ½�1; 1� � ½�1; 1�. Absorbing boundary conditions are implemented by extrapolating all com-
ponents of the solution, see also [21] for other techniques in order to implement absorbing boundary conditions. Due to
symmetry arguments the test was performed on the computational domain ½0; 1� � ½0; 1� with symmetric boundary condi-
tions at the lower and left boundaries. The final time is t ¼ 1:0. The results of the experimental order of convergence are
given in the Table 7. Due to the radial symmetry the errors for u and t are identical within the given precision. Table 8
shows the errors and convergence rates obtained by the Lax-Wendroff scheme. Analogously as in the previous example we
can clearly see much better accuracy of the FVEG scheme in comparison with the standard second order finite difference
scheme.
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Fig. 16. Solution isolines for t ¼ 0:2 and t ¼ 0:4, curved interface.
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isolines of pressure and velocities in x- and y-directions are depicted at several time steps. We can notice good resolution of
circular waves as well as a typical change of the wave form as the pulse propagates through the medium interface.

5.2.4. Wave propagation in a heterogeneous medium with complex interface
The aim of this experiment is to illustrate capability of the FVEG method to model a wave propagation in heterogenous

medium having complex interface not aligned to the grid. Now, the piecewise constant wave speed is defined as
a0ðx; yÞ ¼
1:0 if x 6 0:5 cosð2pðy� 0:4ÞÞ þ 0:4
0:5 otherwise:

	

The computational domain is chosen to be ½�0:95; 1:2� � ½�0:675; 1:475� and initial data are defined in the same way as in
the previous example.

In Figs. 16 and 17 isolines of pressure and velocities in x- and y-directions are depicted at different time instances. Sim-
ilarly as before we can clearly observe a change in the shape of circular waves as they propagate into the different medium.
Moreover, due to the curved interface a complex pattern of reflection waves can be noticed. They are superposed over the
propagating waves as follows from the linearity of the wave equation system.
6. Conclusions

In this paper we have generalized the genuinely multi-dimensional finite volume evolution Galerkin (FVEG) scheme to
hyperbolic conservation laws with spatially varying flux functions. The methodology has been presented for acoustic
waves in heterogeneous medium. The FVEG scheme is based on multi-dimensional approximate evolution operator that
is used for prediction of fluxes on cell interfaces. Using general theory of bicharacteristics we have derived in the Sections
2 and 3 new approximate evolution operators for spatially varying fluxes without any local linearization. This is a novel
feature of the present paper. A staggered grid approach is used to approximate heterogeneous medium. As a consequence
this approach reduces oscillations at the interface where the wave speed is discontinuous. Numerical results for wave
propagation with continuous as well as discontinuous wave speeds demonstrate correct numerical resolution, second or-
der convergence rate and much better global accuracy in comparison to some standard finite difference schemes. In future
we would like to generalize ideas presented in this paper to more complex hyperbolic conservation laws with spatially
varying fluxes.
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Appendix A. Exact wavefront for linear wave speed

Let the wave velocity a0 be a linear function of the form
a0ðx; yÞ ¼ �a0 þ a0xðx� xPÞ þ a0yðy� yPÞ; ðA:1Þ
where ðxP ; yPÞ is a fixed point. In the FVEG scheme ðxP ; yPÞ ¼ ðxðtnþ1Þ; yðtnþ1ÞÞ corresponds to the apex of characteristic conoid.
In this case the wavefront, the bicharacteristics and the corresponding time steps that fulfill the CFL condition can be calcu-
lated analytically.

Lemma A.1. Let a0 be defined by (A.1). Then the solution of the system
dx
dt
¼ �a0ðx; yÞ cos h; xðtnþ1Þ ¼ xP;

dy
dt
¼ �a0ðx; yÞ sin h; yðtnþ1Þ ¼ yP;

dh
dt
¼ �a0x sin hþ a0y cos h; hðtnþ1Þ ¼ x

ðA:2Þ
is described by the following formulae as long as the wave speed a0ðx; yÞ along a bicharacteristic stays positive. Let tn 6 s < tnþ1.
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� If a0x ¼ a0y ¼ 0 then the solution is
xðs;xÞ
yðs;xÞ

� 

¼

xP

yP

� 

þ �a0ðtnþ1 � sÞ

cos x
sinx

� 

; ðA:3Þ
and
hðs;xÞ ¼ x: ðA:4Þ
� If a0x–0 or a0y–0 then using the polar transformation
ðr cosðuÞ; r sinðuÞÞ :¼ ða0x; a0yÞ;
the solution is
xðs;xÞ
yðs;xÞ

� 

¼

xP

yP

� 

þ

�a0

r
ðcoshðrðtnþ1 � sÞÞ � 1Þ

cos u
sinu

� 

þ

�a0

r
sinhðrðtnþ1 � sÞÞ

cos hðs;xÞ
sin hðs;xÞ

� 

; ðA:5Þ
and
hðs;xÞ ¼ uþ 2 arctan erðtnþ1�sÞ tan x�u
2

� �� �
if x�u–ð2kþ 1Þp; k 2 Z

x if x�u ¼ ð2kþ 1Þp; k 2 Z:

(
ðA:6Þ
Proof. Follows from direct, but tedious, derivation of solution of the ODE system (A.2). Note that hðsÞ ¼ x when c ¼ 0 and
when x�u ¼ ð2kþ 1Þp; k 2 Z. �

Remark A.1. For a fixed u; s and c–0 the function hðs; �Þ is continuous and hðs;0Þ ¼ hðs;pÞ. The backward characteristic con-
oid through the point ðxP ; yPÞ is given parametrically by (A.5) as s and x vary as seen in Fig. 18.

We would like to thank the unknown referee for pointing out that the fact that rays are circles when gradients are
constant is a well-known result, cf., e.g., [6].

Lemma A.2. Let r and u be defined as in Lemma A.1 and m be the CFL number. Then the time step satisfying the CFL stability con-
dition is given as follows:

� If a0x ¼ a0y ¼ 0 then
Dt 6 min
mDx
�a0

;
mDy
�a0

� �
: ðA:7Þ
� If a0x–0 or a0y–0 then by setting
aDx :¼ j cosðuÞj; aDy :¼ j sinðuÞj
bDx :¼ mrDx

a0ðxP ;yP Þ
;

pDx :¼ aDxþbDx
aDxþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aDxþbDx
aDxþ1

� �2
� aDx�1

aDxþ1

r
;

and pDy and bDy analogously to pDx and bDx the time step is bounded by
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Dt 6 minðlnðpDxÞ; lnðpDyÞÞ=r: ðA:8Þ
Proof. Follows from the results of Lemma A.1 h

Remark A.2. The analytic formulae for the CFL condition (A.7), (A.8) are sensitive to the finite precision of floating point
arithmetic. In particular it means that if the slope of a0 is close to zero the time steps of zero can be obtained from (A.8)
by finite precision. For example, assume for a one-dimensional problem without loss of generality aDx ¼ 1. Then bDx 	 1
gives pDx � 1 and thus Dt becomes very small. In order to cure this we need to give a threshold value to turn to the formula
(A.7) if the slope of a0 is less then the threshold.

Numerical tests indicate that the formulae from Lemma A.1 applied to linearly recovered wave speeds give only in high
resolutions a slight advantage of accuracy. In fact, we can show by the Taylor expansion of exact wavefront (A.5),(A.6) with
respect to s that its radius differs only to third order and its center to second order accuracy from the approximations used in
Section 3. But the formulae (A.5),(A.6) are more complicated and more expensive computationally. Therefore, in general it is
advisable to work with the approximate wavefront given in (3.10).

Finally let us illustrate a characteristic conoid, rays and wavefronts for a0 given by (A.1), cf. Figs. 18 and 19, where
tnþ1 ¼ 0; tn ¼ �1:2; �a0 ¼ 1 and r ¼

ffiffiffi
2
p

;/ ¼ p=4.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jcp.2008.10.004.
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